Chapter 26
Multithreaded Programming
· A multithreaded program contains two or more parts that can run concurrently.

· Each part of the program is called a thread.

· Each thread defines a separate path of execution.

Thus, multithreading is a specialized form of multitasking.
There are two distinct forms of multitasking:

· process based:  A process is a program that is executing.  This type of multitasking allows your program to run multiple programs concurrently.

· thread based:  The thread is a small unit of code that can be executed.  A single program can dispatch two or more threads that can be executed concurrently.

Process based multitasking deals with the "big picture" where thread based multitasking handles the details.

Multitasking threads require less overhead than multitasking processes.  Processes require their own separate address spaces.  Interprocess communication is expensive and limited.  Context switching from one process to another is costly.  Threads are lightweight in comparison.  They share the same address space and cooperatively share the same process.  Interthread communication is inexpensive, and context switching from one thread to the next is low cost.

Multithreading allows you to write very efficient programs that make maximum use of the CPU, because idle time can be kept to a minimum.

For example:  In a single threaded machine, the system must wait for individual tasks to complete before moving on to the next task.  This can be quite costly when the task involves waiting for user input, or writing to the printer, since the CPU sits idle during most of these processes.  Multithreading enables you to gain access to this idle time.

The Java Thread

Threading is integrated throughout the Java system enabling the entire environment to be asynchronous.  All of the class libraries incorporate multithreading.

The non-Java single-threaded system: uses an approach called an event loop with polling.  Here, a single thread of control runs in an infinite loop, polling a single event queue to decide what to do next.  If the queue returns information indicating that an event has occurred (let's say data is ready to be read), then the appropriate event handler is activated.  While the event handler is working, nothing else can happen in the system.  If the event handler needs to wait, the system must wait.  Also, this kind of process can result in one part of a program dominating the processor, thereby preventing other events from being processed.

The Java Multithreaded system: eliminates the main loop/polling mechanism.  One thread can pause without stopping the other parts of your program.  With multithreading, when an event handler must wait, it enters into a pause state, relinquishing control of the processor so that other events may be handled.  Multithreading allows animation loops to sleep for a second between each frame without causing the whole system to pause.

Threads can exist in several states: running, ready to run, suspended, and blocked.
Java assigns priorities to each thread, by assigning an integer value that specifies the relative priority of one thread to another.  A thread's priority is used to determine which thread to activate when multiple threads are ready to run.  The activation of a thread is referred to as context switching.  The rules that determine when a context switch occurs are simple:

· A thread can voluntarily relinquish control by explicitly yielding, sleeping or blocking on pending I/O.  Here, all other threads are examined.  The thread with the highest priority and is ready to run is activated.

· A thread can be preempted by a higher-priority thread.  In this case, a low-priority thread that does not yield the CPU is preempted (or deactivated) no matter what it is doing by a higher-priority thread.  Therefore, higher-priority threads are given the CPU when ready to run.  This is called preemptive multitasking.

When threads have the same priority, different schemes are used (depending on the operating system you are running).  With Windows 95, threads of equal priority are time-sliced in a round-robin fashion.  Some operating systems allow threads of equal priority to voluntarily relinquish control to their peers.  If they don't, the other threads don't run.  OOPS!

Synchronization

If you want two threads to communicate and share data structures, you need some way to ensure that they don't conflict with each other (i.e., you don't want one thread to be writing data while another thread is in the middle of reading it).  In Java, the monitor (first defined by Hoare) manages this kind of synchronization.  You can think of it as a small box that can hold only one thread.  Once a thread enters a monitor, all other threads must wait until it exits, thereby protecting shared assets from being manipulated by more that one thread simultaneously.

The Thread Class & Runnable Interface

The Thread class defines the following methods:

	Method
	Meaning

	getName
	Obtain a thread's name

	getPriority
	Obtain a thread's priority

	isAlive
	Determines if a thread is still running

	join
	Wait for a thread to terminate

	resume
	Resume execution of a suspended thread

	run
	Entry point for the thread

	sleep
	Suspend a thread for a period of time

	start
	Start a thread by calling its run method

	suspend
	Suspend a thread


Main Thread

· Executed when your program begins

· The thread from which child threads are spawned

· Must be the last thread to finish execution

· Can be controlled through a Thread object by calling currentThread()
[image: image1.png]
[image: image2.png]class CurrentThreadDemo {


public static void main(String args[ ]) {



Thread t = Thread.currentThread( );

[image: image3.png]

System.out.println("Current thread: " + t);



// change the name of the thread



t.setName("Coach's Thread");



System.out.println("After name change: " + t);



try {




for (int n = 5; n > 0; n--) {





System.out.println(n);




Thread.sleep(1000);




}



} 
catch (InterruptedException e) {





System.out.println("Main thread interrupted");




}


}

}

Notice that, by default, 

· the name of the main thread is main, 

· the priority is 5, and 

· system is the name of the thread group.  

A thread group is a data structure that controls the state of a collection of threads as a whole.

Implementing Runnable

You can construct a thread on any object that implements Runnable.  To implement Runnable, a class must implement a single abstract method called Run( ):

Remember, the programmer never intends to instantiate an abstract class.  An abstract class is used as a superclass in inheritance situations.

Inside run( ), you define the code that constitutes the new thread.  run( ) can call other methods, use other classes and declare variables just like main.  The only difference is that run( ) establishes an entry point for another, concurrent thread of execution within your program.  The thread will end when a return from run occurs.

After creating a class that implements Runnable, an object of type Thread must be instantiated.  


Next, start the Thread by calling its start( ) method.  In essence, start( ) executes a call to run( ).

The following example creates a new thread and starts it running.

class NewThread implements Runnable {

  Thread t;

  NewThread ( ) {


// create a new, second thread


t = new Thread(this, "Demo Thread");


System.out.println("Child thread: " + t);


t.start( );  // Start the thread

  }

  public void run( ) {


try {



for (int i = 5; i>0; i--) {




System.out.println("Child Thread: " + i);




Thread.sleep(500);



}


}  catch (InterruptedException e) {



System.out.println("Child interrupted.");  }


System.out.println("Exiting child thread.");

  }

}

class ThreadDemo {

  public static void main(String args[ ]) {


new NewThread( );


try {



for (int i = 5; i>0; i--) {




System.out.println("Main Thread: " + i);




Thread.sleep(1000);



}


}  catch (InterruptedException e) {



System.out.println("Main thread interrupted.");  }


System.out.println("Exiting Main thread exiting.");

  }

}

Extending Thread

The 2nd way to create a thread is to create a new class that extends Thread and then to create an instance of that class.  The extending class must override the run( ) method.  It must also call start( ) to begin execution of the new thread.

class NewThread extends Thread {

  Thread t;

  NewThread ( ) {


// create a new, second thread


super("Demo Thread");


System.out.println("Child thread: " + t);


start( );  // Start the thread 

  }

  public void run( ) {


try {



for (int i = 5; i>0; i--) {




System.out.println("Child Thread: " + i);




Thread.sleep(500);



}


}  catch (InterruptedException e) {



System.out.println("Child interrupted.");  }


System.out.println("Exiting child thread.");

  }

}

class ThreadDemo {

  public static void main(String args[ ]) {


new NewThread( );


try {



for (int i = 5; i>0; i--) {




System.out.println("Main Thread: " + i);




Thread.sleep(1000);



}


}  catch (InterruptedException e) {



System.out.println("Main thread interrupted.");  }


System.out.println("Exiting Main thread exiting.");

  }

}

Which Way Do I Do It?

So, which approach is better?  The Thread class defines several methods that can be overridden by a derived class.  Of these methods, the only one that must be overridden is run( ).  Many Java programmers feel that classes should only be extended when they are being enhanced or modified in some way.  So, if you will not be overriding any of Thread's other methods, it is probably best to implement Runnable.

Creating Multiple Threads

So far, we've seen two threads:  the main and one child thread.  However, an applet can spawn as many threads as it needs.  The following example creates three child threads:

class NewThread implements Runnable {

  String name;

  Thread t;

  NewThread(String threadname) { 


name = threadname;


t = new Thread(this, name);


System.out.println("New thread: " + t);


t.start( );

  }

  public void run( ) {


try {



for (int i = 5; i>0; i--)  {




System.out.println(name + ": " + i);




Thread.sleep(1000);



}


} catch (InterruptedException e) {



System.out.println(name + "Interrupted");


    }


System.out.println(name + " exiting.");

  }

}

class MultiThreadDemo {

  public static void main(String args [ ]) {


new NewThread("One");


new NewThread("Two");


new NewThread("Three");


try {



Thread.sleep(10000);


} catch (InterruptedException e) {



System.out.println("Main thread Interrupted");


     }

  
System.out.println("Main thread exiting.");

  }

}


























































































The thread ends

When a return from

run occurs



Thread(Runnable threadOb, String threadName)



t = new Thread(this, "Demo Thread"); previously.

This statement calls the superclass' constructor,

which instantiates a thread named "Demo Thread."



t.start( ); previously.

Uses the inherited

start method



Note: the main thread must 

be the last thread to finish 

running or else the Java 

run-times system may "hang."



public abstract void run( )



sleep might throw exception

if some other thread wanted

to interrupt this sleeping

one.  This requires a catch.

In a real program, you

would want to handle this

kind of exception differently



Display time in

  milliseconds



static Thread currentThread( )





