Chapter 25
Working with Frame Windows and other GUI Components
· After the applet, the type of window most often created is derived from Frame
· It is used to create child windows within applets

[image: image1.png]VPosiion = 100, HPosiion = 0

[image: image2.png][The reasonabi([Windows 55 _|§]
e uvessona
e
o
-

lsil

Passward:

Constructors:
Frame()

[image: image3.png]Name: Coach
Password: Dependahl

[image: image4.png]Explorer 20 [Explorer 30

Frame(String title)

[image: image5.png]7 Netsospe 11 7 isicape 23

There are several methods that you will use when working with Frame windows:

void resize(int newWidth, int newHeight)

void resize(Dimension newSize)

[image: image6.png]Main Window Test

S Covetrs Framo window I~ 11

5120 Test of Testin Frame.

Dimension size()

[image: image7.png]VPosiion = 100, HPosiion = 0

void hide()

void show()

[image: image8.png]VPosiion = 136, HPosiion = 71

void setTitle(String newTitle)

Responding the WINDOW_DESTROY Event
All objects derived from Component receive events, such as mouse clicks and keypresses. This includes frame windows, which can override event methods such as mouseDown() (as described last week). There is one additional event that your frame windows need to handle --- the one generated when the window is closed.

To do so, your applet must override its main event handler, handleEvent(). handleEvent() is the top-level event handler for your window. All events that relate to your window are routed through it.

As we've seen, evtObj contains the Event object that describes the event. For mouse and keyboard events, handleEvent() simply passes evtObj along to the appropriate mouse or keyboard handler. This is why we did not need to use handleEvent() when creating applets last week. However, there are several other types of events that can only be handled by handleEvent() directly. One of these occurs when the user closes the window.

[image: image9.png]

When overriding handleEvent(), you must return true if you handle the event. Otherwise, you must pass the event along to the superclass implementation by calling super.handleEvent(). With handleEvent(), you can determine what event has occurred by examining the id field of the Event object passed to it as an argument. The Event class defines several constants that are the ID codes for the various events. Each time an event is generated, its ID is put in id. The only ID we need to use for the purposes of this chapter is WINDOW_DESTROY. Here is a skeleton of an overriden handleEvent() method that handles WINDOW_DESTROY.

public boolean handleEvent(Event evtObj) {

if (evtObj.id == Event.WINDOW_DESTROY) {

// respond to event

return true;

}

return super.handleEvent (evtObj);

}

How you respond to the WINDOW_DESTROY message depends upon whether the window is an application's main window or a child window of an applet:

· Applet: it must remove the window from the screen, using hide(). If you don't do this, then the window is never fully removed from the system.

· Top-level windows: you must exit the Java run-time system by calling System.exit().

Creating a Frame Window in an Applet

While it is possible to create a window by creating an instance of Frame, you shouldn't do this. For example, you will not be able to receive or process events that occur within it, or easily output information to it. Most of the time, you will create a subclass of Frame. Doing so lets you override Frame's methods and event handling.

[image: image10.png]

[image: image11.png]e |

New.

Close.

it

You selected Open.
Debugis of
Testis of.

[image: image12.png]e m

Capv
Paste

- specil |
Debug
Testing

You selected Second.

Debugis of.
Testis of.

To create a new frame window from within an applet:

· create a subclass of Frame,
· override any of the standard window methods, such as init(), start(), stop(), and paint(),

· override handleEvent() so that it hides the window when the WINDOW_DESTROY event is received.

Once you have defined a Frame subclass, you can create an object of that class. This causes a frame window to come into existence, but it will not be initially visible. You make it visible by calling show(). When created, the window is given a default height and width. You can set the size of the window explicitly by calling the resize() method.

The following applet creates a subclass of Frame called MyFrame. A window of this subclass is instantiated within the init() method of CreateAFrame. Notice that CreateAFrame calls Frame's constructor. This causes a standard frame window to be created with the title passed in title.

This example overrides the applet window's start() and stop() methods so that they show and hide the child window, respectively. This causes the window to be removed automatically when you terminate the applet, when you close the window, or, if using a browser, when you move to another page. It also causes the child window to be shown when the browser returns to the applet.

// Create a child frame window from within an applet

import java.awt.*;

import java.applet.*;

// Create a subclass of Frame

class MyFrame extends Frame {

MyFrame(String title) {

super(title);

}

// Hide window when terminated by user

public boolean handleEvent(Event evtObj) {

if (evtObj.id == Event.WINDOW_DESTROY) {

hide();

return true;

}

return super.handleEvent(evtObj);

}

public void paint(Graphics g) {

g.drawString("CS 120 Test of Text in Frame", 10, 40);

}

}

// Create the applet window.

public class CreateAFrame extends Applet {

MyFrame f;

// Create a frame window

public void init() {

f = new MyFrame("Coach's Frame Window");

f.show();

[image: image13.png]G o |

cu

copy
Paste

Specil »
« betng
You selected Testng.
Detugis on.

Testis on

f.resize(250, 100);

}

// Remove frame window when stopping applet

public void stop() {

f.hide();

}

// Show frame window when starting applet

public void start() {

f.show();

}

// Display msg in applet window

public void paint(Graphics g) {

g.drawString("Main Window Text", 10, 20);

}

}

Events in Framed Windows

Frame is a subclass of Component. Therefore, it inherits all of the capabilities of a Component, including the ability to paint, repaint, and handle events. In fact, whenever an event occurs in a window, the event is directed to that window's corresponding event handling routines --- each window handles its own events!

Scroll Bars

· Used to select continuous values

· May be horizontal or vertical

· Has several individual parts (i.e., scroll arrows, scroll box and scroll bar)

· Slider box can be dragged to a new position, or repositioned using arrowheads

style:
	Scrollbar.VERTICAL
	Creates a vertical scroll bar

	Scrollbar.HORIZONTAL
	Creates a horizontal scroll bar

initialValue: Initial value of scroll bar

scrollboxSize: The number of units represented by the height of the scroll box

min and max: The minimum and maximum values for the scroll bar

Scroll bar events are not passed to action(), but are instead processed by handleEvent().

· The target field of the Event object that is passed to handleEvent() will contain a reference to the scroll bar causing the event.

· The Event's arg field is an Integer object containing the current scroll bar value.

· The id field will contain a value describing the event.

import java.awt.*;

import java.applet.*;

public class ScrollBarDemo extends Applet {

String msg = "";

Scrollbar verticalScrollBar, horizontalScrollBar;

public void init() {

int width = Integer.parseInt(getParameter("width"));

int height = Integer.parseInt(getParameter("height"));

verticalScrollBar = new Scrollbar(Scrollbar.VERTICAL, height/2, 1, 0, height);

horizontalScrollBar = new Scrollbar(Scrollbar.HORIZONTAL, 0, 1, 0, width);

add(verticalScrollBar);

add(horizontalScrollBar);

}

// Repaint the window whenever a scroll bar is moved

public boolean handleEvent(Event evtObj) {

if (evtObj.target instanceof Scrollbar) {

repaint();

return true;

}

return super.handleEvent(evtObj);

}

// Update scroll bars to reflect mouse dragging

public boolean mouseDrag(Event evtObj, int x, int y) {

verticalScrollBar.setValue(y);

horizontalScrollBar.setValue(x);

repaint();

return true;

}

// Display the current values of the scroll bars

public void paint(Graphics g) {

msg = "VPosition = " + verticalScrollBar.getValue() +

", HPosition = " + horizontalScrollBar.getValue();

g.drawString(msg, 6, 180);

// show current mouse drag position

g.drawString("*", horizontalScrollBar.getValue(), verticleScrollBar.getValue());

} }

TextAreas
TextAreas are useful when you want to display a section of text that exceeds a single line. TextArea constructors are:

· numLines specifies the height (in # of lines) of the TextArea.

· numChars specifies the width of the TextArea.

Text can be manipulated in the text area using:

An example of TextAreas can be seen in my BorderLayoutDemo handout from last week.

Insets

To leave space between the container that holds your components and the window that contains it, use insets. This is done by overriding the insets() method contained in Container. The constructor for Insets is:

top, left, bottom, and right specify the amount of space between the container and its enclosing window.

The insets() method has this form:

When overriding insets(), you must return a new Insets object containing the spacing you desire.

Here is last weeks BorderLayoutDemo with insets:

// Demonstrate BorderLayout
import java.awt.*;

import java.applet.*;

import java.util.*;

public class InsetsDemo extends Applet {

public void init() {

setBackground(Color.yellow);

setLayout(new BorderLayout());

add("North", new Button("This is across the top."));

add("South", new Label("The footer message might go here"));

add("East", new Button("Right"));

add("West", new Button("Left"));

String msg = "The reasonable man adapts " +

 "himself to the world;\n" +

 "the unreasonable one persists in " +

 "trying to adapt the world to himself.\n" +

 "Therefore all progress depends " +

 "on the unreasonable man.\n\n";

add("Center", new TextArea(msg));

}

// add insets

public Insets insets() {

return new Insets(10, 20, 10, 20);

}

}

GridBagLayouts

· The most complex of the predefined layout managers

· Similar to GridLayout
· More flexible since components can vary in size and can be added in any order

· Requires that a GridBagConstraints object be constructed.

	GridBagConstraints

Instance Variable
	Description

	anchor
	Specifies where the component is placed (NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST, NORTHWEST, CENTER) - default is CENTER.

	fill
	Specifies how much of the component's area is occupied (NONE, VERTICAL, HORIZONTAL, or BOTH) - default is NONE.

	gridx
	Column in which the component is placed. Combined with gridy, this represents where the upper-left corner of the component is placed. (0,0) is the top/left-most postion.

	gridy
	Row in which the component is placed

	gridwidth
	# of columns component occupies

	gridheight
	# of rows component occupies

	weightx
	The portion of extra space to allocate horizontally. The components in a row can become "taller" when extra space becomes available due to a resize

	weighty
	The "wider" counterpart to weightx

// Demonstrate GridBagLayout

import java.applet.*;

import java.awt.*;

public class GridBagDemo extends Applet {

private GridBagLayout gbLayout;

private TextArea ta;

private Choice cb;

private Button yes = new Button("Yes");

private Button no = new Button("No");

private Button maybe = new Button("Undecided");

private GridBagConstraints gbConstraints = new GridBagConstraints();

private Label namep = new Label("Name: ", Label.RIGHT);

private Label passp = new Label("Password: ", Label.RIGHT);

private TextField name = new TextField(12);

private TextField pass = new TextField(8);

public void init() {

gbLayout = new GridBagLayout();

setLayout(gbLayout);

// create a text area to be displayed

ta = new TextArea("The reasonable man adapts " +

 "himself to the world;\n" +

 "the unreasonable one persists in " +

 "trying to adapt the world to himself.\n" +

 "Therefore all progress depends " +

 "on the unreasonable man.\n\n", 4, 10);

// set password echo character

pass.setEchoCharacter('*');

// create a choice button to be displayed

cb = new Choice();

cb.addItem("Windows 95");

cb.addItem("Windows NT");

cb.addItem("Solaris");

cb.addItem("MacOS");

// text area-Demo 2nd time with // infront of line below

gbConstraints.fill = GridBagConstraints.BOTH;

addComponent(ta, gbLayout, gbConstraints, 0, 0, 1, 3);

// choice button

addComponent(cb, gbLayout, gbConstraints, 0, 1, 1, 1);

// buttons

addComponent(yes, gbLayout, gbConstraints, 1, 1, 1, 1);

addComponent(no, gbLayout, gbConstraints, 2, 1, 1, 1);

addComponent(maybe, gbLayout, gbConstraints, 3, 1, 1, 1);

// text fields

addComponent(name, gbLayout, gbConstraints, 3, 0, 1, 1);

addComponent(pass, gbLayout, gbConstraints, 4, 0, 1, 1);

}

// User pressed Enter

public boolean action(Event evtObj, Object arg) {

if (evtObj.target instanceof TextField) {

repaint();

return true;

}

return false;

}

public void paint(Graphics g) {

g.drawString("Name: " + name.getText(), 6, 180);

g.drawString("Password: " + pass.getText(), 6, 195);

}

private void addComponent(Component c, GridBagLayout g, GridBagConstraints gc,

int row, int column, int width, int height)

{
gc.gridx = column;

gc.gridy = row;

gc.gridwidth = width;

gc.gridheight = height;

g.setConstraints(c, gc);

add(c);

}

}

CardLayouts

CardLayout stores several different layouts. Each layout can be thought of as being on a separate index card in a deck that can be shuffled so that any card is on top at a given time. This is useful for user interfaces that have optional components which can be dynamically enabled and disabled upon user input. You can prepare the other layouts and have them hidden, ready to be activated when needed.

horz and vert enable the specification of horizontal and vertical spacing.

The cards that form the deck are typically objects of type Panel. This requires you to:

· create a panel that contains the deck, and a panel for each card in the deck

· add the components that form each card to the deck panel

· then add these panels to the panel for which CardLayout is the layout manager

· finally, you add this panel to the main applet panel

You must provide some way for the user to select between cards. One common approach is to include one push button for each card in the deck.

When card panels are added to a panel, they are usually given a name. Most of the time, you will use this form of add() when adding cards to a panel:

Here, name is the name of the card whose panel is specified by panelObj. A reference to the component being added is returned. The advantage of naming each card is that you can bring a card to the surface by specifying its name.

After you have created a deck, you program activates a card by calling one of the following methods defined by CardLayout:

Here, deck is a reference to the container (usually a panel) that holds the cards, and cardName is the name of a card. Calling first() causes the 1st card in the deck to be shown. To show the next card, call next(), and so on.

Here is an example that creates a two-level card deck that allows the user to select a browser. Netscape-based browsers are displayed in one card, Internet Explorer in another:

import java.awt.*;

import java.applet.*;

public class CardLayoutDemo extends Applet {

Checkbox explorer2, explorer3, netscape2, netscape3;

Panel browserCards;

CardLayout cardLO;

public void init() {

Button Explorer = new Button("Internet Explorer");

Button Netscape = new Button("Netscape Navigator");

add(Explorer);

add(Netscape);

cardLO = new CardLayout();

browserCards = new Panel();

browserCards.setLayout(cardLO);

// set panel layout to card layout

explorer2 = new Checkbox("Explorer 2.0", null, true);

explorer3 = new Checkbox("Explorer 3.0");

netscape1 = new Checkbox("Netscape 1.1");

netscape2 = new Checkbox("Netscape 2.x");

Panel ExplorerPanel = new Panel();

// add Explorer check boxes to a panel

ExplorerPanel.add(explorer2);

ExplorerPanel.add(explorer3);

Panel NetscapePanel = new Panel();

// add Netscape check boxes to a panel

NetscapePanel = new Panel();

NetscapePanel.add(netscape1);

NetscapePanel.add(netscape2);

browserCards.add("Exp", ExplorerPanel);

browserCards.add("Nav", NetscapePanel);

add(browserCards);

// add cards to man applet panel

}

public boolean mouseDown(Event evtObj, int x, int y) {
// Cycle through panels

cardLO.next(browserCards);

return true;

}

public boolean action(Event evtObj, Object arg) {

// Display panel selected by button

if (evtObj.target instanceof Button) {

if (arg.equals("Internet Explorer"))

cardLO.show(browserCards, "Exp");

else if (arg.equals("Netscape Navigator"))

cardLO.show(browserCards, "Nav");

return true;

}

return false;

}

}

Menu Bars and Menus
A top-level window can have a menu bar associated with it. A menu bar displays a list of choices. Each is associated with a drop-down menu implemented in Java using: MenuBar, Menu, and MenuItem.

· menu bars contain one or more Menu objects

· each object contains a list of MenuItem objects

· each MenuItem object represents an item that the user can select

· since Menu is a subclass of MenuItem, a hierarchy of nested submenus can be created

· checkable menu items can be included using CheckboxMenuItem

To create a menu bar:

· 1st create an instance of MenuBar

· next, create instance of Menu that define the selections

optionName specifies the name of the menu selection. If removable is true, the pop-up menu can be removed and allowed to float free. Otherwise, it will remain attached to the menu bar.

Individual menu items are of type MenuItem:

Menu Methods:

	void disable()
	Disables a menu item

	void enable()
	Enables a menu item

	boolean isEnabled()
	Determines a menu item's state

	void setLabel(String newName)
	Changes name of the invoking menu item

	String getLabel()
	Gets menu item name

You can create a checkable menu item by using a subclass of MenuItem called CheckboxMenuItem:

Here, itemName is the name shown in the menu. Checkable items operate as toggles. Each time one is selected, its state changes. You can obtain the status of a checkable item by calling getState(). you can set it to a state using setState():

Menu items are added using:

Once you have added all items to a Menu object, you can add that object to the menu bar by using:

Menus only generate events when an item of type MenuItem is selected. They do not generate events when a menu bar is accessed to display a drop-down menu. Each time a menu item is selected, action() is called. The target field of its Event parameter contains a reference to the item that generated the action. Its Object parameter contains a reference to the string that is the name of the option. Usually either value may be used to identify the selection. The following example adds a series of nested menus to a pop-up window:

// Illustrate menus

import java.awt.*;

import java.applet.*;

// Create a subclass of Frame

class MenuFrame extends Frame {

String msg = "";

CheckboxMenuItem debug, test;

MenuFrame(String title) {

super(title);

// create menu bar and add it to frame

MenuBar mbar = new MenuBar();

setMenuBar(mbar);

// create menu bar and add it to frame

// create the menu items

Menu file = new Menu("File");

file.add(new MenuItem("New … "));

file.add(new MenuItem("Open …"));

file.add(new MenuItem("Close … "));

file.add(new MenuItem("-"));

file.add(new MenuItem("Quit … "));

mbar.add(file);

Menu edit = new Menu("Edit");

edit.add(new MenuItem("Cut"));

edit.add(new MenuItem("Copy"));

edit.add(new MenuItem("Paste"));

edit.add(new MenuItem("-"));

Menu sub = new Menu("Special");

sub.add(new MenuItem("First"));

sub.add(new MenuItem("Second"));

sub.add(new MenuItem("Third"));

edit.add(sub);

// these are checkable menu items

debug = new CheckboxMenuItem("Debug");

edit.add(debug);

test = new CheckboxMenuItem("Testing");

edit.add(test);

mbar.add(edit);

}

// Hide window when terminated by user

public boolean handleEvent(Event evtObj) {

if (evtObj.id == Event.WINDOW_DESTROY) {

hide();

return true;

}

return super.handleEvent(evtObj);

}

// Display men choices

public boolean action(Event evtObj, Object arg) {

if (evtObj.target instanceof MenuItem) {

msg = "You selected ";

if (arg.equals("New…"))

msg += "New.";

else if (arg.equals("Open…"))

msg += "Open.";

else if (arg.equals("Close…"))

msg += "Close.";

else if (arg.equals("Quit…"))

msg += "Quit.";

else if (arg.equals("Edit"))

msg += "Edit.";

else if (arg.equals("Cut"))

msg += "Cut.";

else if (arg.equals("Copy"))

msg += "Copy.";

else if (arg.equals("Paste"))

msg += "Paste.";

else if (arg.equals("First"))

msg += "First.";

else if (arg.equals("Second"))

msg += "Second.";

else if (arg.equals("Third"))

msg += "Third.";

else if (arg.equals("Debug"))

msg += "Debug.";

else if (arg.equals("Testing"))

msg += "Testing.";

repaint();

return true;

}

return false;

}

public void paint(Graphics g) {

g.drawString(msg, 10, 140);

if (debug.getState())

g.drawString("Debug is on.", 10, 160);

else
g.drawString("Debug is off.", 10, 160);

if (test.getState())

g.drawString("Test is on.", 10, 180);

else
g.drawString("Test is off.", 10, 180);

}

}

// Create frame window

public class MenuDemo extends Applet {

Frame f;

public void init() {

f = new MenuFrame("Menu Demo");

int width = Integer.parseInt(getParameter("width"));

int height = Integer.parseInt(getParameter("height"));

resize(width,height);

f.show();

}

public void start() {

f.show();

}

public void stop() {

f.hide();

}

}

Programming Assignment for Chapter 25
Write a color chooser program containing three Scrollbar objects and three TextField objects. Each Scrollbar represents the values from 0 to 255 for the red, green and blue parts of a color. Use the red, green and blue values as the arguments to the Color constructor to create a new Color object. Display the current value of each Scrollbar in the corresponding TextField. When the user changes the value of the Scrollbar, the TextField should be changed accordingly. Display the current Color value. This could be done by adding a panel, and manipulating its color, or by changing the background color of your applet area.
Extra Credit: Modify the above program to allow the user to type an integer value into a TextField to set the red, green or blue value. When the user presses Enter in the TextField, the corresponding Scrollbar should be set to the appropriate value. Also, manipulate the color of the individual scrollbars, making them individually display their proportional shades of red, green, and blue.
Date Due (At 5PM, the last day of scheduled classes (check the bottom of your syllabus). No assignments will be accepted after this date.

Everytime we return

to page

Everytime we go to

another HTML page

Menu add(Menu menu)

MenuItem add(MenuItem item)

boolean getState()

void setState(boolean checked)

CheckboxMenuItem(String itemName)

itemname is the name

shown in the menu

MenuItem Constructor:

MenuItem(String itemName)

Menu Constructors:

Menu(String optionName)

Menu(String optionName, boolean removable)

CardLayout Methods:

void first(Container deck)

void last(Container deck)

void next(Container deck)

void previous(Container deck)

void show(Container deck, String cardName)

Component add(String name, Component panelObj);

Constructors:

CardLayout()

CardLayout(int horz, int vert)

depth

width

column

row

GridBagConstraints tells the system how a component is to be laid out

Insets insets()

Insets(int top, int left, int bottom, int right)

void appendText(String str)

void insertText(String str, int index)

void replaceText(String str, int startIndex, int endIndex)

TextArea()

TextArea(int numLines, int numChars)

TextArea(String str)

TextArea(String str, int numLines, int numChars)

 Vertical

ScrollBox Size

Changed to 500 &

Mouse Positioned

 @ 136, 71

� EMBED Word.Picture.8 ���

gets/sets scroll bar value

Additional constructors that work with scroll bars:

void setValues(int initialValue, int scrollboxSize, int min, int max)

int getValue()

void setValue(int newValue)

int getMinimum()

int getMaximum()

void setLineIncrement(int newIncr)

void setPageIncrement(int newIncr)

Must use setValues method

Constructors:

Scrollbar()

Scrollbar(int style)

Scrollbar(int style, int initialValue, int scrollboxSize, int min, int max)

Constructor: boolean handleEvent(Event evtObj)

 Visual of a

Framed Window

newTitle is the new title for the window

Once a Frame window has been created, it will not be visible until you call

show(). To hide a window (remove it from view), call hide().

You can obtain the current size of a window by calling size(). The size()

method returns Dimension (the current size of the window contained within

the width and height fields).

Dimension is an object in which the

width is stored in width, and the

height is stored in height

With title

Creates a standard window without title

_924172767.doc
[image: image1.png]VPosiion = 100, HPosiion = 0

