Chapter 24
Image Fundamentals

 There are three common operations that occur when you work with images:

· creating an image

· loading an image, and

· displaying an image

In Java, the Image class is used to refer to images in memory and to images that must be loaded from external sources.

Creating an Image Object

The createImage() method has the following two forms:

[image: image1.png]Meaning

The idth parameter is valid and contains the width of the image.
The height parameter is valid and contains the height of the image.
The properties assodated with the image can now be obtained
using imgObj.getProperty().

More pixels needed to draw the image have heen received. The

parameters le?, fop, Tudth, and keight define the rectangle
containing the new pixels.

A complete frame that is part of a multiframe image, which was
previousiv drawn, has been received. This frame can be

displaved. The Iz, top, Tudth, and height parameters are not used.

The image is now complete. The left, top, Twdth, and height
parameters are not used.

An error has occurred to an image that was bemg tracked
asynchronously. The image is mcomplete and cannot be
displaved. No further image information will be received. As a
convenience, the ABORT flag will also be set to indicate that the
image production was aborted.

An image that was being tracked asynchronousiy was aborted before
it was complete. However, if an error has not occurred, accessing any
part of the image’s data will restart the procuction of the image.

The 1st form returns an image produced by imgProd, which is an object of a class that implements the ImageProducer interface (there's not enough time this semester to talk about image producers). The 2nd form returns a blank (empty) image that has the specified width and height. Here is an example:

[image: image3.png]

This creates an instance of Canvas, then calls the createImage() method to make an Image object. At this point, the image is blank.

Loading an Image

The other way to obtain an image is to load one using getImage(). When getImage is invoked, it launches a separate thread of execution in which the image is loaded (or downloaded from the Internet):

[image: image4.png]

The 1st version returns an Image object that encapsulates the image found at the location specified by url. The 2nd version returns an Image object that encapsulates the image found at the location specified by url and having the name specified by imageName.

An Image is where the actual pixels to be displayed are stored. Every image has an associated graphics context (i.e., an object of class Graphics that enables drawing to be performed). Images are first manipulated internally within your applets, then painted to the screen subsequently with drawImage().

Displaying an Image

Once you have an image, you can display it by using drawImage(), which is a member of the Graphics class:

[image: image5.png]vincent malisse picassa

This displays the image passed in imgObj with its upper-left corner specified by left, top. imgOb is a reference to a class that implements the ImageObserver interface. An image observer is an object that can monitor an image while it loads. It will be discuss later.

Here is a sample applet that loads and displays a single image:

import java.awt.*;

import java.applet.*;

import java.net.*;

public class SimpleImageLoad extends Applet

{
Image img;

URL coach;

public void init() {

try {coach = new URL("http://www.cs.sbcc.cc.ca.us/~rhd/");

}

catch (MalformedURLException e) {

showStatus("Exception: " + e.toString());

}

img = getImage(coach, "coach2c.gif");

}

public void paint(Graphics g) {

g.drawImage(img, 0, 0, this);

}

}

ImageObserver

When the applet begins to run you can see the image gradually load. This is because the ImageObserver interface calls paint() as it receives image data. With ImageObserver, you can monitor the loading of an image. An applet can then use the time it takes to load the image to do other things in parallel. When the image has been fully loaded, the entire image is then painted to the screen.

Using an image observer allows you to perform other actions such as showing a progress indicator as you are informed of the progress of the download. This kind of notification is useful when loading an image over a network with a slow modem.

ImageObserver defines only one method:

[image: image6.png]Image not found: oachZe. g

The default implementation of imageUpdate() in Applet has several problems:

· First, it repaints the entire image each time any new data arrives. This causes flashing between the background color and the image.

· Second, it uses a feature of Applet.repaint() to cause the system to only repaint the image every tenth of a second. This causes a jerky, uneven feel as the image is painting.

· Finally, the default implementation knows nothing about images that may fail to load properly.

The example that follows fixes all of these problems in ten lines of code. First, it eliminates the flickering with two small changes:

· It overrides update() so that it calls paint() without painting the background color first (the background is instead painted once in init)

· It uses a version of repaint() that paints only a portion of the rectangle is painted

import java.applet.*;

import java.awt.*;

import java.awt.image.*;

import java.net.*;

public class ObservedImageLoad extends Applet {

 Image img;

 URL coach;

 boolean error = false;

 String imgname = "coach2c.gif";

public void init() {

setBackground(Color.blue);

try {coach = new URL("http://www.cs.sbcc.cc.ca.us/~rhd/");

}

catch (MalformedURLException e) {

showStatus("Exception: " + e.toString());

}

img = getImage(coach, imgname);

 }

 public void paint(Graphics g) {

if (error) {

Dimension d = size();

g.setColor(Color.red);

g.fillRect(0,0,d.width,d.height);

g.setColor(Color.black);

g.drawString("Image not found: " + imgname, 10, d.height/2);

}

else g.drawImage(img, 0, 0, this);

 }

 public void update(Graphics g) {

paint(g);

 }

 public boolean imageUpdate(Image img, int flags, int x, int y, int w, int h) {

if ((flags & SOMEBITS) != 0) { // new partial data

repaint(x, y, w, h); // paint new pixels

}

else if ((flags & (ABORT | ERROR)) != 0) {

error = true; // file not found

repaint(); // paint whole applet

}

return (flags & (ALLBITS | ABORT | ERROR)) = = 0;

 }}
The following is a list of constants that can be or’d with flags, to determine the status of a image download:

[image: image7.png]

Buffering

Images are not only useful for storing pictures, but also for rendering drawings. An image is an offscreen drawing surface. This allows you to render an image to a buffer that you can display at a later time. The advantage of doing this is that the image is seen only when it is complete. Drawing a complicated image could take several milliseconds, which can be seen by the user as flashing or flickering. With a buffered image, the applet can instead render the image in the buffer. When completed, it can then be displayed as a unit thereby eliminating the flicker.

Displaying the image requires a Graphics object in order to use any of Java's rendering methods. Conveniently, the Graphics object that you can use to draw on an Image is available via the getGraphics() method.

The following example illustrates the effect of buffering. It uses the createImage, drawImage and getGraphics methods:

import java.awt.*;

import java.applet.*;

public class DoubleBuffer extends Applet {

int w, h, mx, my, gap = 3;

boolean flicker = true;

Image buffer = null;

public void init() {

Dimension d = size();

w = d.width;

h = d.height;

buffer = createImage(w, h);

}

public void paint(Graphics g) {

Graphics screengc = null;

if (!flicker) {

screengc = g;

g = buffer.getGraphics();

}

g.setColor(Color.blue);

g.fillRect(0,0,w,h);

g.setColor(Color.red);

for (int i=0; i<w; i+=gap)

g.drawLine(i,0,w-i,h);

for (int i=0; i<h; i+=gap)

g.drawLine(0,i,w,h-i);

g.setColor(Color.black);

g.drawString("Press mouse button to double buffer", 10, h/2);

g.setColor(Color.yellow);

g.fillOval(mx-gap, my-gap, gap*2+1, gap*2+1);

if (!flicker) screengc.drawImage(buffer, 0, 0, null);

}

public void update(Graphics g) {

paint(g);

}

public boolean mouseMove(Event e, int x, int y) {

mx = x;

my = y;

flicker = true;

repaint();

return true;

}

public boolean mouseDrag(Event e, int x, int y) {

mx = x;

my = y;

flicker = false;

repaint();

return true;

} }

MediaTracker

ImageObserver provides a difficult interface when handling multiple images. For simplicity, Sun Microsystems recently added a class called MediaTracker. A MediaTracker is an object that will check the status of an arbitrary number of images in parallel. In future releases it will also track other media types such as audio.

To use MediaTracker, you create an instance and then use addImage() to track the loading status of an image. addImage() has the following forms:

imgObj is the image being tracked. imgID is the ID number of the image. width and height contain the dimensions of the object when displayed.

To check the status of an image use:

checkID returns a true if all images associated with imgID have been loaded.

Use MediaTracker when loading a group of images. It allows you to monitor the process enabling you to display something else to entertain the user until they arrive.

The following program creates a MediaTracker then adds a collection of images to be tracked using addImage(). In the paint() method, checkID() is called on each tracked image. If all of the images are loaded, they are displayed. Otherwise, a bar chart displays the loading status. Note that the applet has been extended to implement interface Runnable so that the animation can be run as a separate thread and have control over the execution of the thread.

 /* <applet code="TrackedImageLoad" width=300 height=400>

 * <param name="img"

 * value="vincent+leonardo+matisse+picasso+renoir+seurat+vermeer">

 * </applet>

*/

import java.util.*;

import java.applet.*;

import java.awt.*;

public class TrackedImageLoad extends Applet implements Runnable {

 MediaTracker tracker;

 int tracked;

 int frame_rate = 5;

 int current_img = 0;

 Thread motor;

 static final int MAXIMAGES = 10;

 Image img[] = new Image[MAXIMAGES];

 String name[] = new String[MAXIMAGES];

public void init() {

tracker = new MediaTracker(this);

 StringTokenizer st = new StringTokenizer(getParameter("img"), "+");

while(st.hasMoreTokens() && tracked <= MAXIMAGES) {

name[tracked] = st.nextToken();

img[tracked] = getImage(getDocumentBase(), name[tracked] + ".jpeg");

tracker.addImage(img[tracked], tracked);

tracked++;

 }

}

public void paint(Graphics g) {

String loaded = "";

int donecount = 0;

for(int i=0; i<tracked; i++) {

if (tracker.checkID(i, true)) {

donecount++;

 loaded += name[i] + " ";

}

}

Dimension d = size();

int w = d.width;

int h = d.height;

if (donecount = = tracked) {

frame_rate = 1;

Image i = img[current_img++];

int iw = i.getWidth(null);

int ih = i.getHeight(null);

g.drawImage(i, (w - iw)/2, (h - ih)/2, null);

if (current_img >= tracked)

current_img = 0;

}

else {
int x = w * donecount / tracked;

g.setColor(Color.black);

g.fillRect(0, h/3, x, 16);

g.setColor(Color.white);

g.fillRect(x, h/3, w-x, 16);

g.setColor(Color.black);

g.drawString(loaded, 10, h/2);

}

}

public void start() {

motor = new Thread(this);

motor.start();

}

public void stop() {

motor.stop();

}

public void run() {

motor.setPriority(Thread.MIN_PRIORITY);

while (true) {

repaint();

try { Thread.sleep(1000/frame_rate);

 } catch (InterruptedException e) { }

}

}

}

The following code uses MediaTracker to enable the program to determine when all images are loaded in conjunction with an animation.

· MediaTracker is instantiated with the statement:

imageTracker = new MediaTracker(this);

· The images are then loaded with getImage.

· Each image is then registered with MediaTracker with the statement:

imageTracker.addImage(earth[i], i);

· Once all the images have been registered with the imageTracker, the program is forced to wait until the imaged identified as 0 is completely loaded using the following statement:

imageTracker.waitForId(0);

· MediaTracker also provides a waitForAll method that blocks until all the images registered are completely loaded.
package earth;

import java.applet.Applet;

import java.awt.*;

import java.lang.Object;

import java.util.TimerTask;
import java.util.Timer;
public class earthimage extends Applet {

 private Image earth[];

 private int totalImages = 33, // total number of images

 currentImage = 0, // current image subscript

 sleepTime = 100; // milliseconds to sleep

 MediaTracker imageTracker;
 Timer myTimer;

// load the images when the applet begins executing

 public void init()

 {
 myTimer = new Timer(true);

 myTimer.schedule(

 new TimerTask (){
 public void run() {

 repaint();
 }

 }
 ,0, sleepTime);
 earth = new Image[totalImages];

 imageTracker = new MediaTracker(this);

 for (int i = 0; i < earth.length; i++) {

 earth[i] = getImage(getDocumentBase(),

 "images/earth" + (i+1) + ".gif");

// track loading image

 imageTracker.addImage(earth[i], i);

 }

 try {

 imageTracker.waitForID(0); } catch(InterruptedException e) { }

 }

 public void start(Graphics g)

 {

 g.drawImage(earth[0], 0,0, 300, 300,this);

 currentImage = 1;

 }

public void paint(Graphics g)

 {

 if (imageTracker.checkID(currentImage, true))
 {
 g.drawImage(earth[currentImage], 0, 0, 300, 300, this);
 if (currentImage== 0)

 earth[totalImages-1].flush();

 else earth[currentImage-1].flush();

 currentImage = ++currentImage % totalImages;

 }

 else

 postEvent(new Event(this, Event.MOUSE_ENTER, ""));

 }
// override update to eliminate flicker

 public void update(Graphics g)

 {

 paint(g);

 }

}

[image: image2]

Loading and Playing Audio Clips
Java programs can manipulate and play audio clips. This chapter contains a section on how this is done in swing. I will not lecture on this activity, since it closely resembles loading images.

You will need to incorporate sound into your final project. To do so, you’ll need to review the section on Loading and Playing Audio Clips in the textbook, or, review the program listed below.

You may use either swing, or non-swing based methods. The textbook incorporates examples using swing. The following program accomplishes the same goal, but in a non-swing based manner:

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class LoadAudioAndPlay extends Applet implements ActionListener{

 private AudioClip sound;

 private Button playSound, loopSound, stopSound;

 public void init()

 { sound = getAudioClip (getDocumentBase(), "spacemusic.au");

 playSound = new Button("Play");

 playSound.addActionListener(this);

 add(playSound);

 loopSound = new Button("Loop");

 loopSound.addActionListener(this);

 add(loopSound);

 stopSound = new Button("Stop");

 stopSound.addActionListener(this);

 add(stopSound);

 }

 public void actionPerformed(ActionEvent e)

 { if (e.getSource() == playSound)

 sound.play();

 else if (e.getSource() == loopSound)

 sound.loop();

 else if (e.getSource() == stopSound)

 sound.stop();

 }

}
Chapter 24 Assignment
For full credit, your final (Chapter 24) assignment is to write an applet that:
· has an animation with at least 10 images

· launches a frame that does something within it

· plays sound

· is demonstrated in class

Check my website for files that you care about, and additional information about this project: http://www.cs.sbcc.edu/~rhd/cs120.html
Note regarding Sound Files: With Internet Explorer, my experience continues to indicate that sounds files used in applets must be configured precisely as .au files - Freq:8000 MuLAW 8bit. You may not vary from this format. If you have a .wav file that you’d like to play in IE, you’ll need to convert it into this format. There are many programs available that will support the conversion of .wav files to .au files Freq:80000 MuLAW 8bit. Use any program that you like! I have provided a link to a program that works fine, and can be downloaded for free. To get the program, go to my java website page, and click on either the Audacity or Audition hypertext links.

This project is worth 40 points:

· 10 points for animation

· 10 points for sound

· 10 points for frame

· 10 points for classroom demonstration

It is due the last day of scheduled classes (check the bottom of the 2nd page of your syllabus for the date). Demonstrations will occur on the last class meeting of the semester. No late work will be accepted.
There will be significant extra credit if your project reaches

Coach’s Hall of Fame
However, your animation must run in Internet Explorer launched from an .html file.

a fix to help Netscape

load images

true parameter causes

image to start down-

loading now if it hasn’t

already started

Calls threads

run method

parameters

are x & y

coordinates,

width & height

true parameter causes

image to start down-

loading now if it hasn’t

already started

Creates a new thread and invokes the

threads start method. The applet's run

method is invoked to control the animation.

Everything that used to be accomplished

by the paint method is now accomplished

by the infinite loop in run with the exception

of the actual display of the image on the

applet - this is still performed by paint.

Invoked automatically to stop

the thread when user leaves the

Web page on which this applet

resides. start is reinvoked if

Web page is revisited.

Animation begins immediately

since the images are still loaded

overrides update

eliminating the clearing

of the applet that would

otherwise be done

Flushes memory

associated with

previous image

this is the object on

which the image is drawn

returns false if image has completed loading or error

returns true if image is still loading

Checks flags parameter for:

 ABORT bit - the image load was aborted

 ERROR bit - the image load encountered an error

SOMEBITS - new image pixels have been received

ALLBITS - the image is now complete

Note: getImage() always succeeds even when the image specified does not exist

boolean imageUpdate(Image imgObj, int flags, int left, int top, int width, int height)

wait for 1st

load to complete

add to tracker

load images

id number

image to track

draw 1st image

otherwise,

draw status bar

if done, display images

check load status

load images listed

in html file for

parameter img

boolean checkID(int imgID)

void addImage(Image imgObj, int imgID)

void addImage(Image imgObj, int imgID, int width, int height)

do graphics on g if g

refers to screen, then it

updates the screen during

real time, else it updates

the buffer and buffer is

displayed as a unit

changes g to point

 to empty image

 workspace

creates an empty

image workspace

boolean drawImage(Image imgObj, int left, int top, ImageObserver imgOb)

Image getImage(URL url)

Image getImage(URL url, String imageName)

Canvas c = new Canvas();

Image test = c.create.Image(200, 100)

Image createImage(ImageProducer imgProd)

Image createImage(int width, int height)

_1099298586.bin

