
26 Multithreading: Solutions

The most general definition of
beauty…Multeity in Unity.
—Samuel Taylor Coleridge

Do not block the way of inquiry.
—Charles Sanders Peirce

A person with one watch knows
what time it is; a person with
two watches is never sure.
—Proverb

Learn to labor and to wait.
—Henry Wadsworth Longfellow

The world is moving so fast these
days that the man who says it
can’t be done is generally
interrupted by someone doing it.
—Elbert Hubbard

O b j e c t i v e s
In this chapter you’ll learn:

■ What threads are and why
they’re useful.

■ How threads enable you to
manage concurrent activities.

■ The life cycle of a thread.

■ To create and execute
Runnables.

■ Thread synchronization.

■ What producer/consumer
relationships are and how
they’re implemented with
multithreading.

■ To enable multiple threads to
update Swing GUI
components in a thread-safe
manner.

 Self-Review Exercises 2

Self-Review Exercises
26.1 Fill in the blanks in each of the following statements:

a) A thread enters the terminated state when .
ANS: its run method ends.
b) To pause for a designated number of milliseconds and resume execution, a thread

should call method of class .
ANS: sleep, Thread.
c) Method of class Condition moves a single thread in an object’s waiting state

to the runnable state.
ANS: signal.
d) Method of class Condition moves every thread in an object’s waiting state to

the runnable state.
ANS: signalAll.
e) A(n) thread enters the state when it completes its task or other-

wise terminates.
ANS: runnable, terminated.
f) A runnable thread can enter the state for a specified interval of time.
ANS: timed waiting.
g) At the operating-system level, the runnable state actually encompasses two separate

states, and .
ANS: ready, running.
h) Runnables are executed using a class that implements the interface.
ANS: Executor.
i) ExecutorService method ends each thread in an ExecutorService as soon

as it finishes executing its current Runnable, if any.
ANS: shutdown.
j) A thread can call method on a Condition object to release the associated Lock

and place that thread in the state.
ANS: await, waiting.
k) In a(n) relationship, the generates data and stores it in a shared

object, and the reads data from the shared object.
ANS: producer/consumer, producer, consumer.
l) Class implements the BlockingQueue interface using an array.
ANS: ArrayBlockingQueue.
m) Keyword indicates that only one thread at a time should execute on an object.
ANS: synchronized.

26.2 State whether each of the following is true or false. If false, explain why.
a) A thread is not runnable if it has terminated.
ANS: True.
b) Some operating systems use timeslicing with threads. Therefore, they can enable threads

to preempt threads of the same priority.
ANS: False. Timeslicing allows a thread to execute until its timeslice (or quantum) expires.

Then other threads of equal priority can execute.
c) When the thread’s quantum expires, the thread returns to the running state as the op-

erating system assigns it to a processor.
ANS: False. When a thread’s quantum expires, the thread returns to the ready state and the

operating system assigns to the processor another thread.

3 Chapter 26 Multithreading: Solutions

d) On a single-processor system without timeslicing, each thread in a set of equal-priority
threads (with no other threads present) runs to completion before other threads of equal
priority get a chance to execute.

ANS: True.

Exercises
NOTE: Solutions to the programming exercises are located in the ch26solutions folder.
Each exercise has its own folder named ex26_## where ## is a two-digit number represent-
ing the exercise number. For example, exercise 26.8’s solution is located in the folder
ex26_08.

26.3 State whether each of the following is true or false. If false, explain why.
a) Method sleep does not consume processor time while a thread sleeps.
ANS: True.
b) Declaring a method synchronized guarantees that deadlock cannot occur.
ANS: False. Deadlocks can occur if the lock on an object is never released.
c) Once a ReentrantLock has been obtained by a thread, the ReentrantLock object will not

allow another thread to obtain the lock until the first thread releases it.
ANS: True.
d) Swing components are thread safe.
ANS: False. Swing components are not thread safe. All interactions with Swing GUI com-

ponents should be performed in the event-dispatching thread.

26.4 Define each of the following terms.
a) thread
ANS: An individual execution context of a program.
b) multithreading
ANS: The ability of more than one thread to execute concurrently.
c) runnable state
ANS: A state in which the thread is capable of running (if the processor becomes available).
d) timed waiting state
ANS: A state in which the thread cannot use the processor because it is waiting for a time

interval to expire or a notification from another thread.
e) preemptive scheduling
ANS: A thread of higher priority enters a running state and is assigned to the processor. The

thread preempted from the processor is placed back in the ready state according to its
priority.

f) Runnable interface
ANS: An interface that provides a run method. By implementing the Runnable interface,

any class can be executed as a separate thread.
g) notifyAll method
ANS: Transitions all threads waiting on an object’s monitor to the runnable state.
h) producer/consumer relationship
ANS: A relationship in which a producer and a consumer share common data. The produc-

er typically wants to "produce" (add information) and the consumer wants to "con-
sume" (remove information).

i) quantum
ANS: A small amount of processor time, also called a time slice.

26.5 Discuss each of the following terms in the context of Java’s threading mechanisms:

 Exercises 4

a) synchronized
ANS: When a method or block is declared synchronized and it is running, the object is

locked. Other threads cannot access the other synchronized methods of the object
until the lock is released.

b) producer
ANS: A thread that writes data to a shared memory resource.
c) consumer
ANS: A thread that reads data from a shared memory resource.
d) wait
ANS: Places a thread in the waiting state until another thread calls notify or notifyAll on

the same object or until a specified amount of time elapses.
e) notify
ANS: Wake a thread currently waiting on the given object.
f) Lock
ANS: An interface implemented by objects that control access to a resource shared among

multiple threads. Only one thread can be holding a Lock at one time—a second
thread calling the lock method will block until the unlock method is called. Using
the Lock interface is more complicated than using the synchronized keyword, but is
more flexible.

g) Condition
ANS: Objects of this interface represent condition variables that can be used with Locks to

manage access to a shared resource.

26.6 List the reasons for entering the blocked state. For each of these, describe how the program
will normally leave the blocked state and enter the runnable state.

ANS: A thread transitions to the blocked state when it attempts to perform a task that can-
not be completed immediately and the thread must temporarily wait until that task
completes. For example, when a thread issues an input/output request, the operating
system blocks the thread from executing until that I/O request completes—at that
point, the blocked thread transitions to the runnable state, so it can resume execution.
A thread also transitions to the blocked state when it attempts to acquire a monitor
lock that is not currently available. When the lock becomes available, the thread re-
turns to the runnable state and attempts to acquire the lock.

26.7 Two problems that can occur in systems that allow threads to wait are deadlock, in which
one or more threads will wait forever for an event that cannot occur, and indefinite postponement,
in which one or more threads will be delayed for some unpredictably long time. Give an example of
how each of these problems can occur in multithreaded Java programs.

ANS: Deadlock: If we have two threads named thread1 and thread2, deadlock might occur
in the following situation: If thread1 is waiting for thread2 to complete a task, and
thread2 is waiting for thread1 to complete a task, then neither thread can continue.
Since both threads are in the waiting state, neither thread can be signaled to continue
executing. To help prevent deadlocks, ensure locks are always taken in the same order
and released in the opposite order they were taken.

Indefinite Postponement: This typically occurs because threads of higher priority are
scheduled before threads of lower priority.

