
22 Custom Generic Data
Structures: Solutions

Much that I bound, I could not
free;
Much that I freed returned to
me.
—Lee Wilson Dodd

‘Will you walk a little faster?’
said a whiting to a snail,
‘There’s a porpoise close behind
us, and he’s treading on my tail.’
—Lewis Carroll

There is always room at the top.
—Daniel Webster

Push on—keep moving.
—Thomas Morton

I’ll turn over a new leaf.
—Miguel de Cervantes

O b j e c t i v e s
In this chapter you’ll learn:

■ To form linked data structures
using references, self-
referential classes, recursion
and generics.

■ To create and manipulate
dynamic data structures,
such as linked lists, queues,
stacks and binary trees.

■ Various important
applications of linked data
structures.

■ How to create reusable data
structures with classes,
inheritance and composition.

 Self-Review Exercises 2

Self-Review Exercises
22.1 Fill in the blanks in each of the following statements:

a) A self- class is used to form dynamic data structures that can grow and shrink
at execution time.

ANS: referential.
b) A(n) is a constrained version of a linked list in which nodes can be inserted

and deleted only from the start of the list.
ANS: stack.
c) A method that does not alter a linked list, but simply looks at it to determine whether

it’s empty, is referred to as a(n) method.
ANS: predicate.
d) A queue is referred to as a(n) data structure because the first nodes inserted

are the first ones removed.
ANS: first-in, first-out (FIFO).
e) The reference to the next node in a linked list is referred to as a(n) .
ANS: link.
f) Automatically reclaiming dynamically allocated memory in Java is called .
ANS: garbage collection.
g) A(n) is a constrained version of a linked list in which nodes can be inserted

only at the end of the list and deleted only from the start of the list.
ANS: queue.
h) A(n) is a nonlinear, two-dimensional data structure that contains nodes with

two or more links.
ANS: tree.
i) A stack is referred to as a(n) data structure because the last node inserted is the

first node removed.
ANS: last-in, first-out (LIFO).
j) The nodes of a(n) tree contain two link members.
ANS: binary.
k) The first node of a tree is the node.
ANS: root.
l) Each link in a tree node refers to a(n) or of that node.
ANS: child or subtree.
m) A tree node that has no children is called a(n) node.
ANS: leaf.
n) The three traversal algorithms we mentioned in the text for binary search trees are

, and .
ANS: inorder, preorder, postorder.

22.2 What are the differences between a linked list and a stack?
ANS: It’s possible to insert a node anywhere in a linked list and remove a node from any-

where in a linked list. Nodes in a stack may be inserted only at the top of the stack
and removed only from the top.

22.3 What are the differences between a stack and a queue?
ANS: A queue is a FIFO data structure that has references to both its head and its tail, so

that nodes may be inserted at the tail and deleted from the head. A stack is a LIFO
data structure that has a single reference to the stack’s top, where both insertion and
deletion of nodes are performed.

3 Chapter 22 Custom Generic Data Structures: Solutions

22.4 Perhaps a more appropriate title for this chapter would have been Reusable Data Structures.
Comment on how each of the following entities or concepts contributes to the reusability of data
structures:

a) classes
ANS: Classes allow us to instantiate as many data structure objects of a certain type (i.e.,

class) as we wish.
b) inheritance
ANS: Inheritance enables a subclass to reuse the functionality from a superclass. Public and

protected methods of a superclass can be accessed through a subclass to eliminate du-
plicate logic.

c) composition
ANS: Composition enables a class to reuse code by storing a reference to an instance of an-

other class in a field. Public methods of the instance can be called by methods in the
class that contains the reference.

22.5 Manually provide the inorder, preorder and postorder traversals of the binary search tree of
Fig. 22.20.

ANS: The inorder traversal is

11 18 19 28 32 40 44 49 69 71 72 83 92 97 99

The preorder traversal is

49 28 18 11 19 40 32 44 83 71 69 72 97 92 99

The postorder traversal is

11 19 18 32 44 40 28 69 72 71 92 99 97 83 49

Exercises
NOTE: Solutions to the programming exercises are located in the ch22solutions folder.
Each exercise has its own folder named ex22_## where ## is a two-digit number represent-
ing the exercise number. For example, exercise 22.17’s solution is located in the folder
ex22_17.
22.18 (Duplicate Elimination) In this chapter, we saw that duplicate elimination is straightfor-
ward when creating a binary search tree. Describe how you’d perform duplicate elimination when
using only a one-dimensional array. Compare the performance of array-based duplicate elimination
with the performance of binary-search-tree-based duplicate elimination.

Fig. 22.20 | Binary search tree with 15 nodes.

49

28

18 40 71 97

83

11 19 32 44 69 72 92 99

 Exercises 4

ANS: First, sort the array—this makes all the duplicates be adjacent. Then, walk through
the array with a source and destination index, copying only the first of a sequence of
duplicates from the source to the destination. Once the source index reaches the end
of the array, remove the elements after the destination index from the array. This
yields the same efficiency as inserting them into a balanced binary search tree.

22.27 (Lists and Queues without Tail References) Our implementation of a linked list (Fig. 22.3)
used both a firstNode and a lastNode. The lastNode was useful for the insertAtBack and remove-
FromBack methods of the List class. The insertAtBack method corresponds to the enqueue method
of the Queue class.

Rewrite the List class so that it does not use a lastNode. Thus, any operations on the tail of a
list must begin searching the list from the front. Does this affect our implementation of the Queue
class (Fig. 22.13)?

ANS: The interface of the List class was not changed—just its implementation. Therefore,
the Queue class does not need to be changed other than changing the import state-
ments to point to the different List class. The performance of the Queue will be ad-
versely affected because adding to the end of the List is now linear in the number of
elements instead of constant time.

22.28 (Performance of Binary Tree Sorting and Searching) One problem with the binary tree sort
is that the order in which the data is inserted affects the shape of the tree—for the same collection
of data, different orderings can yield binary trees of dramatically different shapes. The performance
of the binary tree sorting and searching algorithms is sensitive to the shape of the binary tree. What
shape would a binary tree have if its data were inserted in increasing order? in decreasing order?
What shape should the tree have to achieve maximal searching performance?

ANS: If the data were inserted in increasing or decreasing order, the tree would consist of
only right children or only left children, respectively. Essentially, the tree would be a
sorted linked list. To achieve maximum performance, the depth of the tree should be
minimized—in other words, all non-leaf nodes except for the last row should have
two children.

