
21Generic Classes and
Methods

Every man of genius sees the
world at a different angle from
his fellows.
—Havelock Ellis

…our special individuality, as
distinguished from our generic
humanity.
—Oliver Wendell Holmes, Sr.

Born under one law, to another
bound.
—Lord Brooke

O b j e c t i v e s
In this chapter you’ll learn:

■ To create generic methods
that perform identical tasks
on arguments of different
types.

■ To create a generic Stack
class that can be used to
store objects of any class or
interface type.

■ To understand how to
overload generic methods
with nongeneric methods or
with other generic methods.

■ To understand raw types and
how they help achieve
backward compatibility.

■ To use wildcards when
precise type information
about a parameter is not
required in the method body.

2 Chapter 21 Generic Classes and Methods

Self-Review Exercises
21.1 State whether each of the following is true or false. If false, explain why.

a) A generic method cannot have the same method name as a nongeneric method.
ANS: False. Generic and nongeneric methods can have the same method name. A generic

method can overload another generic method with the same method name but dif-
ferent method parameters. A generic method also can be overloaded by providing
nongeneric methods with the same method name and number of arguments.

b) All generic method declarations have a type-parameter section that immediately pre-
cedes the method name.

ANS: False. All generic method declarations have a type-parameter section that immediate-
ly precedes the method’s return type.

c) A generic method can be overloaded by another generic method with the same method
name but different method parameters.

ANS: True.
d) A type parameter can be declared only once in the type-parameter section but can ap-

pear more than once in the method’s parameter list.
ANS: True.
e) Type-parameter names among different generic methods must be unique.
ANS: False. Type-parameter names among different generic methods need not be unique.
f) The scope of a generic class’s type parameter is the entire class except its static mem-

bers.
ANS: True.

21.2 Fill in the blanks in each of the following:
a) and enable you to specify, with a single method declaration, a set of

related methods, or with a single class declaration, a set of related types, respectively.
ANS: Generic methods, generic classes.
b) A type-parameter section is delimited by .
ANS: angle brackets (< and >).
c) A generic method’s can be used to specify the method’s argument types, to

specify the method’s return type and to declare variables within the method.
ANS: type parameters.
d) The statement "Stack objectStack = new Stack();" indicates that objectStack stores

.
ANS: a raw type.
e) In a generic class declaration, the class name is followed by a(n) .
ANS: type-parameter section.
f) The syntax specifies that the upper bound of a wildcard is type T.
ANS: ? extends T.

Exercises
NOTE: Solutions to the programming exercises are located in the ch21solutions folder.
Each exercise has its own folder named ex21_## where ## is a two-digit number represent-
ing the exercise number. For example, exercise 21.8’s solution is located in the folder
ex21_08.

21.3 Explain the use of the following notation in a Java program:

public class Array< T > { }

ANS: This notation declares a generic class named Array with a single type parameter T.

 Exercises 3

21.4 Write a simple generic version of method isEqualTo that compares its two arguments with
the equals method and returns true if they are equal and false otherwise. Use this generic method
in a program that calls isEqualTo with a variety of built-in types, such as Object or Integer. What
result do you get when you attempt to run this program?

ANS: For classes that override the equals method, the program will compare the objects
based on their contents. For example, the Integer class’s equals method would
compare the contents of two Integer objects. For classes that do not override the
equals method, the program will compare the objects based on their references, not
their contents.

21.9 How can generic methods be overloaded?
ANS: A generic method may be overloaded in several ways. Generic methods can be over-

loaded by other generic methods that specify the same method name but different
method parameters. Generic methods can also be overloaded by non-generic meth-
ods that have the same method name and number of parameters.

21.10 The compiler performs a matching process to determine which method to call when a
method is invoked. Under what circumstances does an attempt to make a match result in a compile-
time error?

ANS: If the compiler cannot match the method call made to either a non-generic method
or a generic method, or if the matching process results in multiple matches with no
matches more specific than the others at compile time, the compiler generates an er-
ror.

21.11 Explain why a Java program might use the statement

ArrayList< Employee > workerList = new ArrayList< Employee >();

ANS: When creating objects from a generic class, it is necessary to provide a type argument
(or possibly several type arguments) to instantiate the objects with actual types. The
above statement would be used to create an ArrayList object that stores Employee ob-
jects. The compiler can then perform type checking to ensure that the code uses the
ArrayList of Employees properly.

