
19 Searching, Sorting and
Big O: Solutions

With sobs and tears he sorted out
Those of the largest size …
—Lewis Carroll

Attempt the end, and never
stand to doubt;
Nothing’s so hard, but search
will find it out.
—Robert Herrick

’Tis in my memory lock’d,
And you yourself shall keep the
key of it.
—William Shakespeare

It is an immutable law in
business that words are words,
explanations are explanations,
promises are promises — but
only performance is reality.
—Harold S. Green

O b j e c t i v e s
In this chapter you’ll learn:

■ To search for a given value in
an array using linear search
and binary search.

■ To sort arrays using the
iterative selection and
insertion sort algorithms.

■ To sort arrays using the
recursive merge sort
algorithm.

■ To determine the efficiency of
searching and sorting
algorithms.

 Self-Review Exercises 2

Self-Review Exercises
19.1 Fill in the blanks in each of the following statements:

a) A selection sort application would take approximately times as long to run
on a 128-element array as on a 32-element array.

ANS: 16, because an O(n2) algorithm takes 16 times as long to sort four times as much in-
formation.

b) The efficiency of merge sort is .
ANS: O(n log n).

19.2 What key aspect of both the binary search and the merge sort accounts for the logarithmic
portion of their respective Big Os?

ANS: Both of these algorithms incorporate “halving”—somehow reducing something by
half. The binary search eliminates from consideration one-half of the array after each
comparison. The merge sort splits the array in half each time it’s called.

19.3 In what sense is the insertion sort superior to the merge sort? In what sense is the merge sort
superior to the insertion sort?

ANS: The insertion sort is easier to understand and to program than the merge sort. The
merge sort is far more efficient [O(n log n)] than the insertion sort [O(n2)].

19.4 In the text, we say that after the merge sort splits the array into two subarrays, it then sorts
these two subarrays and merges them. Why might someone be puzzled by our statement that “it
then sorts these two subarrays”?

ANS: In a sense, it does not really sort these two subarrays. It simply keeps splitting the
original array in half until it provides a one-element subarray, which is, of course,
sorted. It then builds up the original two subarrays by merging these one-element ar-
rays to form larger subarrays, which are then merged, and so on.

Exercises
NOTE: Solutions to the programming exercises are located in the ch19solutions folder.
Each exercise has its own folder named ex19_## where ## is a two-digit number represent-
ing the exercise number. For example, exercise 19.10’s solution is located in the folder
ex19_10.

19.5 (Bubble Sort) Implement bubble sort—another simple yet inefficient sorting technique. It’s
called bubble sort or sinking sort because smaller values gradually “bubble” their way to the top of
the array (i.e., toward the first element) like air bubbles rising in water, while the larger values sink
to the bottom (end) of the array. The technique uses nested loops to make several passes through
the array. Each pass compares successive pairs of elements. If a pair is in increasing order (or the
values are equal), the bubble sort leaves the values as they are. If a pair is in decreasing order, the
bubble sort swaps their values in the array.

The first pass compares the first two elements of the array and swaps their values if necessary.
It then compares the second and third elements in the array. The end of this pass compares the last
two elements in the array and swaps them if necessary. After one pass, the largest element will be in
the last index. After two passes, the largest two elements will be in the last two indices. Explain why
bubble sort is an O(n2) algorithm.

ANS: Bubble sort contains two nested for loops. The outer for loop (lines 24–33) iterates
over data.length - 1 passes. The inner for loop (lines 27–32) iterates over da-
ta.length - 1 elements in the array. When loops are nested, the respective orders are
multiplied. This is because for each of O(n) iterations of the outside loop, there are
O(n) iterations of the inner loop. This results in a total Big O of O(n2).

