
18Recursion: Solutions

We must learn to explore all the
options and possibilities that
confront us in a complex and
rapidly changing world.
—James William Fulbright

O! thou hast damnable
iteration, and art indeed able to
corrupt a saint.
—William Shakespeare

It's a poor sort of memory that
only works backwards.
—Lewis Carroll

Life can only be understood
backwards; but it must be lived
forwards.
—Soren Kierkegaard

O b j e c t i v e s
In this chapter you’ll learn:

■ The concept of recursion.
■ How to write and use

recursive methods.
■ How to determine the base

case and recursion step in a
recursive algorithm.

■ How recursive method calls
are handled by the system.

■ The differences between
recursion and iteration, and
when to use each.

■ What the geometric shapes
called fractals are and how to
draw them using recursion.

■ What recursive backtracking
is and why it’s an effective
problem-solving technique.

2 Chapter 18 Recursion: Solutions

Self-Review Exercises
18.1 State whether each of the following is true or false. If false, explain why.

a) A method that calls itself indirectly is not an example of recursion.
ANS: False. A method that calls itself in this manner is an example of indirect recursion.
b) Recursion can be efficient in computation because of reduced memory-space usage.
ANS: False. Recursion can be inefficient in computation because of multiple method calls

and memory-space usage.
c) When a recursive method is called to solve a problem, it actually is capable of solving

only the simplest case(s), or base case(s).
ANS: True.
d) To make recursion feasible, the recursion step in a recursive solution must resemble the

original problem, but be a slightly larger version of it.
ANS: False. To make recursion feasible, the recursion step in a recursive solution must re-

semble the original problem, but be a slightly smaller version of it.

18.2 A is needed to terminate recursion.
a) recursion step
b) break statement
c) void return type
d) base case
ANS: d) base case

18.3 The first call to invoke a recursive method is .
a) not recursive
b) recursive
c) the recursion step
d) none of the above
ANS: a) not recursive

18.4 Each time a fractal’s pattern is applied, the fractal is said to be at a new .
a) width
b) height
c) level
d) volume
ANS: c) level

18.5 Iteration and recursion each involve a .
a) repetition statement
b) termination test
c) counter variable
d) none of the above
ANS: b) termination test

18.6 Fill in the blanks in each of the following statements:
a) The ratio of successive Fibonacci numbers converges on a constant value of 1.618…, a

number that has been called the or the .
ANS: golden ratio, golden mean.
b) Iteration normally uses a repetition statement, whereas recursion normally uses a(n)

 statement.
ANS: selection.
c) Fractals have a(n) property—when subdivided into parts, each is a reduced-

size copy of the whole.
ANS: self-similar.

 Exercises 3

Exercises
NOTE: Solutions to the programming exercises are located in the ch18solutions folder.
Each exercise has its own folder named ex18_## where ## is a two-digit number represent-
ing the exercise number. For example, exercise 18.17’s solution is located in the folder
ex18_17.

18.7 What does the following code do?

ANS: The method adds a to itself b times, which in essence multiplies the values a and b,
recursively.

18.8 Find the error(s) in the following recursive method, and explain how to correct it (them).
This method should find the sum of the values from 0 to n.

ANS: The code above will result in infinite recursion, unless the value initially passed to the
method is 0 (the base case). There is no code to make the recursive call on line 6 sim-
pler than the previous call. The call on line 6 should decrease n by 1.

1 public int mystery(int a, int b)
2 {
3 if (b == 1)
4 return a;
5 else
6 return a + mystery(a, b - 1);
7 } // end method mystery

1 public int sum(int n)
2 {
3 if (n == 0)
4 return 0;
5 else
6 return n + sum(n);
7 } // end method sum

4 Chapter 18 Recursion: Solutions

18.12 What does the following program do?

ANS: This code totals the values in an array.

18.13 What does the following program do?

ANS: This code displays the values in an array backwards.

1 // Exercise 18.12 Solution: MysteryClass.java
2 public class MysteryClass
3 {
4 public static int mystery(int[] array2, int size)
5 {
6 if (size == 1)
7 return array2[0];
8 else
9 return array2[size - 1] + mystery(array2, size - 1);

10 } // end method mystery
11
12 public static void main(String[] args)
13 {
14 int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
15
16 int result = mystery(array, array.length);
17 System.out.printf("Result is: %d\n", result);
18 } // end method main
19 } // end class MysteryClass

1 // Exercise 18.13 Solution: SomeClass.java
2 public class SomeClass
3 {
4 public static String someMethod(int[] array2, int x)
5 {
6 if (x < array2.length)
7 return String.format(
8 "%s%d ", someMethod(array2, x + 1), array2[x]);
9 else

10 return "";
11 } // end method someMethod
12
13 public static void main(String[] args)
14 {
15 int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
16 String results = someMethod(array, 0);
17 System.out.println(results);
18 } // end main
19 } // end class SomeClass

