
9Object-Oriented
Programming: Inheritance,
Solutions

Say not you know another
entirely,
till you have divided an
inheritance with him.
—Johann Kasper Lavater

This method is to define as the
number of a class the class of all
classes similar to the given class.
—Bertrand Russell

O b j e c t i v e s
In this chapter you’ll learn:

■ How inheritance promotes
software reusability.

■ The notions of superclasses
and subclasses and the
relationship between them.

■ To use keyword extends to
create a class that inherits
attributes and behaviors from
another class.

■ To use access modifier
protected to give subclass
methods access to superclass
members.

■ To access superclass
members with super.

■ How constructors are used in
inheritance hierarchies.

■ The methods of class
Object, the direct or indirect
superclass of all classes.

 Self-Review Exercises 2

Self-Review Exercises
9.1 Fill in the blanks in each of the following statements:

a) is a form of software reusability in which new classes acquire the members
of existing classes and embellish those classes with new capabilities.

ANS: Inheritance.
b) A superclass’s members can be accessed in the superclass declaration and

in subclass declarations.
ANS: public and protected.
c) In a(n) relationship, an object of a subclass can also be treated as an object

of its superclass.
ANS: is-a or inheritance.
d) In a(n) relationship, a class object has references to objects of other classes

as members.
ANS: has-a or composition.
e) In single inheritance, a class exists in a(n) relationship with its subclasses.
ANS: hierarchical.
f) A superclass’s members are accessible anywhere that the program has a ref-

erence to an object of that superclass or to an object of one of its subclasses.
ANS: public.
g) When an object of a subclass is instantiated, a superclass is called implicitly

or explicitly.
ANS: constructor.
h) Subclass constructors can call superclass constructors via the keyword.
ANS: super.

9.2 State whether each of the following is true or false. If a statement is false, explain why.
a) Superclass constructors are not inherited by subclasses.
ANS: True.
b) A has-a relationship is implemented via inheritance.
ANS: False. A has-a relationship is implemented via composition. An is-a relationship is

implemented via inheritance.
c) A Car class has an is-a relationship with the SteeringWheel and Brakes classes.
ANS: False. This is an example of a has-a relationship. Class Car has an is-a relationship

with class Vehicle.
d) When a subclass redefines a superclass method by using the same signature, the subclass

is said to overload that superclass method.
ANS: False. This is known as overriding, not overloading—an overloaded method has the

same name, but a different signature.

Exercises
NOTE: Solutions to the programming exercises are located in the ch09solutions folder.
Each exercise has its own folder named ex09_## where ## is a two-digit number represent-
ing the exercise number. For example, exercise 9.3’s solution is located in the folder
ex09_03.

3 Chapter 9 Object-Oriented Programming: Inheritance, Solutions

9.4 Discuss the ways in which inheritance promotes software reuse, saves time during program
development and helps prevent errors.

ANS: Inheritance allows developers to create subclasses that reuse code declared already in
a superclass. Avoiding the duplication of common functionality between several
classes by building a class inheritance hierarchy can save developers a considerable
amount of time. Similarly, placing common functionality in a single superclass, rath-
er than duplicating the code in multiple unrelated classes, helps prevent the same er-
rors from appearing in multiple source-code files. If errors occur in the common
functionality of the superclass, the software developer needs to modify only the su-
perclass’s.

9.5 Draw an inheritance hierarchy for students at a university similar to the hierarchy shown in
Fig. 9.2. Use Student as the superclass of the hierarchy, then extend Student with classes Under-
graduateStudent and GraduateStudent. Continue to extend the hierarchy as deep (i.e., as many lev-
els) as possible. For example, Freshman, Sophomore, Junior and Senior might extend
UndergraduateStudent, and DoctoralStudent and MastersStudent might be subclasses of Gradu-
ateStudent. After drawing the hierarchy, discuss the relationships that exist between the classes.
[Note: You do not need to write any code for this exercise.]

ANS:

This hierarchy contains many is-a (inheritance) relationships. An UndergraduateStudent is a
Student. A GraduateStudent is a Student, too. Each of the classes Freshman, Sophomore, Junior
and Senior is an UndergraduateStudent and is a Student. Each of the classes DoctoralStudent and
MastersStudent is a GraduateStudent and is a Student. Note that there could be many more
classes. For example, GraduateStudent could have subclasses like LawStudent, BusinessStudent,
MedicalStudent, etc.

Freshman Senior

Sophomore Junior

UndergraduateStudent GraduateStudent

MastersStudentDoctoralStudent

Student

 Exercises 4

9.6 The world of shapes is much richer than the shapes included in the inheritance hierarchy
of Fig. 9.3. Write down all the shapes you can think of—both two-dimensional and three-dimen-
sional—and form them into a more complete Shape hierarchy with as many levels as possible. Your
hierarchy should have class Shape at the top. Classes TwoDimensionalShape and ThreeDimension-
alShape should extend Shape. Add additional subclasses, such as Quadrilateral and Sphere, at their
correct locations in the hierarchy as necessary.

ANS: [Note: Solutions may vary.]

9.7 Some programmers prefer not to use protected access, because they believe it breaks the
encapsulation of the superclass. Discuss the relative merits of using protected access vs. using pri-
vate access in superclasses.

ANS: private instance variables are hidden in the subclass and are accessible only through
the public or protected methods of the superclass. Using protected access enables
the subclass to manipulate the protected members without using the access methods
of the superclass. This makes the code more brittle, because changes to the superclass
might require changes to the subclasses. If the superclass instance variables are pri-
vate, the methods of the superclass must be used to access the data. This encapsula-
tion makes the code easier to maintain, modify and debug.

Quadrilateral

Trapezoid

Rhombus Rectangle

Square

Ellipse

Circle

Parallelogram

CubeTriangle Cylinder

PrismCone

TetrahedronDodecahedron

Sphere

TwoDimensionalShape ThreeDimensionalShape

Shape

