Methods: A Deeper Look,
Solutions

E pluribus unum.
(One composed of many.)
—Virgil

O! call back yesterday, bid time
return.
—William Shakespeare

Call me Ishmael.

—Herman Melville

Answer me in one wora'.
—William Shakespeare

There is a point at which
methods devour themselves.

—Frantz Fanon

Objectives
In this chapter you'll learn:

m How static methods and
fields are associated with
classea rather than objects.

= How the method call/return
mechanism is supported by
the method-call stack.

m How packages group related
classes.

= How to use random-number
generation to implement
game-playing applications.

m How the visibility of
declarations is limited to
specific regions of programs.

= What method overloading is
and how to create overloaded
methods.

Self-Review Exercises 2

Self-Review Exercises

6.1

6.2

6.3

Fill in the blanks in each of the following statements:

a) A method is invoked with a(n)

ANS: method call.

b) A variable known only within the method in which it’s declared is called a(n)

ANS: local variable.

c) The statement in a called method can be used to pass the value of an ex-
pression back to the calling method.

ANS: return.

d) The keyword indicates that a method does not return a value.

ANS: void.

e) Data can be added or removed only from the of a stack.

ANS: top.

f) Stacks are known as data structures—the last item pushed (inserted) on

the stack is the first item popped (removed) from the stack.
ANS: last-in, first-out (LIFO).
g) The three ways to return control from a called method to a caller are ,

and .
ANS: return; or return expression; or encountering the closing right brace of a method.
h) An object of class produces random numbers.

ANS: Random.

i) The program-execution stack contains the memory for local variables on each invoca-
tion of a method during a program’s execution. This data, stored as a portion of the pro-
gram-execution stack, is known as the or of the method call.

ANS: activation record, stack frame.

j) If there are more method calls than can be stored on the program-execution stack, an

error known as a(n) occurs.

ANS: stack overflow.

k) The of a declaration is the portion of a program that can refer to the entity
in the declaration by name.

ANS: scope.

) I’s possible to have several methods with the same name that each operate on different
types or numbers of arguments. This feature is called method

ANS: method overloading.

m) The program-execution stack is also referred to as the stack.

ANS: method call.

For the class Craps in Fig. 6.9, state the scope of each of the following entities:
ANS: class body.

a) the variable randomNumbers.

b) the variable diel.

ANS: block that defines method ro11Dice’s body.
c) the method rol1Dice.

ANS: class body.

d) the method play.

ANS: class body.

e) the variable sumofDice.

ANS: block that defines method play’s body.

Werite an application that tests whether the examples of the Math class method calls shown

in Fig. 6.2 actually produce the indicated results.

3 Chapter 6 Methods: A Deeper Look, Solutions
ANS: The following solution demonstrates the Math class methods in Fig. 6.2:
1 // Exercise 6.3: MathTest.java
2 // Testing the Math class methods.
3
4 public class MathTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf("Math.abs(23.7) = %f\n", Math.abs(23.7));
9 System.out.printf("Math.abs(0.0) = %f\n", Math.abs(0.0));
10 System.out.printf("Math.abs(-23.7) = %f\n", Math.abs(-23.7));
11 System.out.printf("Math.ceil(9.2) = %f\n", Math.ceil(9.2));
12 System.out.printf("Math.ceil(-9.8) = %f\n", Math.ceil(-9.8));
13 System.out.printf("Math.cos(0.0) = %f\n", Math.cos(0.0));
14 System.out.printf("Math.exp(1.0) = %f\n", Math.exp(1.0));
15 System.out.printf("Math.exp(2.0) = %f\n", Math.exp(2.0));
16 System.out.printf("Math.floor(9.2) = %f\n", Math.floor(9.2));
17 System.out.printf("Math.floor(-9.8) = %f\n",
18 Math.floor(-9.8));
19 System.out.printf("Math.log(Math.E) = %f\n",
20 Math.log(Math.E));
21 System.out.printf("Math.log(Math.E * Math.E) = %f\n",
22 Math.log(Math.E * Math.E));
23 System.out.printf("Math.max(2.3, 12.7) = %f\n",
24 Math.max(2.3, 12.7));
25 System.out.printf("Math.max(-2.3, -12.7) = %f\n",
26 Math.max(-2.3, -12.7));
27 System.out.printf("Math.min(2.3, 12.7) = %f\n",
28 Math.min(2.3, 12.7));
29 System.out.printf("Math.min(-2.3, -12.7) = %f\n",
30 Math.min(-2.3, -12.7));
31 System.out.printf("Math.pow(2.0, 7.0) = %f\n",
32 Math.pow(2.0, 7.0));
33 System.out.printf("Math.pow(9.0, 0.5) = %f\n",
34 Math.pow(9.0, 0.5));
35 System.out.printf("Math.sin(0.0) = %f\n", Math.sin(C 0.0));
36 System.out.printf("Math.sqrt(900.0) = %f\n",
37 Math.sqrt(900.0));
38 System.out.printf("Math.tan(0.0) = %f\n", Math.tan(0.0));
39 } // end main
40 } // end class MathTest
Math.abs(23.7) = 23.700000
Math.abs(0.0) = 0.000000
Math.abs(-23.7) = 23.700000
Math.ceil(9.2) = 10.000000
Math.ceil(-9.8) = -9.000000
Math.cos(0.0) = 1.000000
Math.exp(1.0) = 2.718282
Math.exp(2.0) = 7.389056
Math.floor(9.2) = 9.000000
Math.floor(-9.8) = -10.000000
Math.log(Math.E) = 1.000000
Math.log(Math.E * Math.E) = 2.000000
Math.max(2.3, 12.7) = 12.700000
Math.max(-2.3, -12.7) = -2.300000
Math.min(2.3, 12.7) = 2.300000
Math.min(-2.3, -12.7) = -12.700000
Math.pow(2.0, 7.0) = 128.000000
Math.pow(9.0, 0.5) = 3.000000
Math.sin(0.0) = 0.000000
Math.sqrt(900.0) = 30.000000
Math.tan(0.0) = 0.000000

6.4

6.5

Self-Review Exercises 4

Give the method header for each of the following methods:

a) Method hypotenuse, which takes two double-precision, floating-point arguments
sidel and side2 and returns a double-precision, floating-point result.

ANS: double hypotenuse(double sidel, double side2)

b) Method smallest, which takes three integers x, y and z and returns an integer.

ANS: int smallest(int x, int y, int z)

¢) Method instructions, which does not take any arguments and does not return a value.
[Note: Such methods are commonly used to display instructions to a user.]

ANS: void instructions()

d) Method intToFloat, which takes an integer argument number and returns a floating-
point result.

ANS: float intToFloat(int number)

Find the error in each of the following program segments. Explain how to correct the error.
a) void gO

{
System.out.println("Inside method g");
void hQ
{
System.out.printin("Inside method h");
}
}

ANS: Error: Method h is declared within method g.
Correction: Move the declaration of h outside the declaration of g.
b) int sum(int x, inty)
{
int result;
result = x + y;
}
ANS: Error: The method is supposed to return an integer, but does not.
Correction: Delete the variable result, and place the statement
return x + y;
in the method, or add the following statement at the end of the method body:
return result;
c) void f(float a);
{
float a;
System.out.printin(a);
}
ANS: Error: The semicolon after the right parenthesis of the parameter list is incorrect, and
the parameter a should not be redeclared in the method.
Correction: Delete the semicolon after the right parenthesis of the parameter list, and
delete the declaration float aj.
d) void product()
{
inta=6, b=5, c =4, result;
result = a * b * c;
System.out.printf("Result is %d\n", result);
return result;

5 Chapter 6 Methods: A Deeper Look, Solutions

ANS: Error: The method returns a value when it’s not supposed to.
Correction: Change the return type from void to int.

6.6 Write a complete Java application to prompt the user for the double radius of a sphere, and
call method sphereVolume to calculate and display the volume of the sphere. Use the following state-
ment to calculate the volume:

double volume = (4.0 / 3.0) * Math.PI * Math.pow(radius, 3)

ANS: The following solution calculates the volume of a sphere, using the radius entered by
the user:

I // Exercise 6.6: Sphere.java
2 // Calculate the volume of a sphere.
3 dimport java.util.Scanner;
4
5 public class Sphere
6 {
7 // obtain radius from user and display volume of sphere
8 public void determineSphereVolume()
9 {
10 Scanner input = new Scanner(System.in);
11
12 System.out.print("Enter radius of sphere: ");
13 double radius = input.nextDouble();
14
15 System.out.printf("Volume is %f\n", sphereVolume(radius));
16 } // end method determineSphereVolume
17
18 // calculate and return sphere volume
19 public double sphereVolume(double radius)
20 {
21 double volume = (4.0 / 3.0) * Math.PI * Math.pow(radius, 3);
22 return volume;
23 } // end method sphereVolume

24 } // end class Sphere

1 // Exercise 6.6: SphereTest.java

2 // Calculate the volume of a sphere.

3

4 public class SphereTest

5 {

6 // application starting point

7 public static void main(String[] args)
8 {

9 Sphere mySphere = new Sphere();
10 mySphere.determineSphereVolume(Q);
11 } // end main

12 } // end class SphereTest

Enter radius of sphere: 4
Volume is 268.082573

Exercises 6

Exercises

NOTE: Solutions to the programming exercises are located in the ch06solutions folder.
Each exercise has its own folder named ex06_## where ## is a two-digit number represent-
ing the exercise number. For example, exercise 6.8’s solution is located in the folder
ex06_08.

6.7

6.11

6.12

6.13

What is the value of x after each of the following statements is executed?
a) x = Math.abs(7.5);

ANS: 7.5

b) x = Math.floor(7.5);

ANS: 7.0

c) x = Math.abs(0.0);

ANS: 0.0

d) x = Math.ceil(0.0);

ANS: 0.0

e) X = Math.abs(-6.4);

ANS: 6.4

f) X = Math.ceil(-6.4);

ANS: -6.0

g) x = Math.ceil(-Math.abs(-8 + Math.floor(-5.5)));
ANS: -14.0

Answer each of the following questions:

a) What does it mean to choose numbers “at random”?

ANS: Every number has an equal chance of being chosen at any time.

b) Why is the nextInt method of class Random useful for simulating games of chance?

ANS: Because it produces a series of random numbers.

¢) Why is it often necessary to scale or shift the values produced by a Random object?

ANS: To produce random numbers in a specific range.

d) Why is computerized simulation of real-world situations a useful technique?

ANS: It enables more accurate predictions of random events, such as cars arriving at toll
booths and people arriving in lines at a supermarket. The results of a simulation can
help determine how many toll booths to have open or how many cashiers to have
open at specified times.

Write statements that assign random integers to the variable 7 in the following ranges:
a) 1<n<L2

ANS: n = 1 + randomNumbers.nextInt(2);
b) 1 <n <100

ANS: n = | + randomNumbers.nextInt(100);
c 0<n<9

ANS: n = randomNumbers.nextInt(10);

d) 1000 <z <1112

ANS: n = 1000 + randomNumbers.nextInt(113);

e) -1 <n <l

ANS: n = -1 + randomNumbers.nextInt(3);

) -3 <n<l11

ANS: n = -3 + randomNumbers.nextInt(15);

ANS: [Note: See the test program in the ch06solutions\ex06_12 folder.]

For each of the following sets of integers, write a single statement that will display a number

at random from the set:

7 Chapter 6 Methods: A Deeper Look, Solutions

a) 2,4,6,8,10.

ANS: System.out.printin(2 + randomNumbers.nextInt(5) * 2);

b) 3,5,7,9,11.

ANS: System.out.printin(3 + randomNumbers.nextInt(5) * 2);

¢ 6,10, 14, 18, 22.

ANS: System.out.printin(6 + randomNumbers.nextInt(5) * 4y

ANS: [Note: See the test program in the ch06solutions\ex06_12 folder.]

