
6Methods: A Deeper Look,
Solutions

E pluribus unum.
(One composed of many.)
—Virgil

O! call back yesterday, bid time
return.
—William Shakespeare

Call me Ishmael.
—Herman Melville

Answer me in one word.
—William Shakespeare

There is a point at which
methods devour themselves.
—Frantz Fanon

O b j e c t i v e s
In this chapter you’ll learn:

■ How static methods and
fields are associated with
classea rather than objects.

■ How the method call/return
mechanism is supported by
the method-call stack.

■ How packages group related
classes.

■ How to use random-number
generation to implement
game-playing applications.

■ How the visibility of
declarations is limited to
specific regions of programs.

■ What method overloading is
and how to create overloaded
methods.

 Self-Review Exercises 2

Self-Review Exercises
6.1 Fill in the blanks in each of the following statements:

a) A method is invoked with a(n) .
ANS: method call.
b) A variable known only within the method in which it’s declared is called a(n)

.
ANS: local variable.
c) The statement in a called method can be used to pass the value of an ex-

pression back to the calling method.
ANS: return.
d) The keyword indicates that a method does not return a value.
ANS: void.
e) Data can be added or removed only from the of a stack.
ANS: top.
f) Stacks are known as data structures—the last item pushed (inserted) on

the stack is the first item popped (removed) from the stack.
ANS: last-in, first-out (LIFO).
g) The three ways to return control from a called method to a caller are ,

 and .
ANS: return; or return expression; or encountering the closing right brace of a method.
h) An object of class produces random numbers.
ANS: Random.
i) The program-execution stack contains the memory for local variables on each invoca-

tion of a method during a program’s execution. This data, stored as a portion of the pro-
gram-execution stack, is known as the or of the method call.

ANS: activation record, stack frame.
j) If there are more method calls than can be stored on the program-execution stack, an

error known as a(n) occurs.
ANS: stack overflow.
k) The of a declaration is the portion of a program that can refer to the entity

in the declaration by name.
ANS: scope.
l) It’s possible to have several methods with the same name that each operate on different

types or numbers of arguments. This feature is called method .
ANS: method overloading.
m) The program-execution stack is also referred to as the stack.
ANS: method call.

6.2 For the class Craps in Fig. 6.9, state the scope of each of the following entities:
ANS: class body.
a) the variable randomNumbers.
b) the variable die1.
ANS: block that defines method rollDice’s body.
c) the method rollDice.
ANS: class body.
d) the method play.
ANS: class body.
e) the variable sumOfDice.
ANS: block that defines method play’s body.

6.3 Write an application that tests whether the examples of the Math class method calls shown
in Fig. 6.2 actually produce the indicated results.

3 Chapter 6 Methods: A Deeper Look, Solutions

ANS: The following solution demonstrates the Math class methods in Fig. 6.2:

1 // Exercise 6.3: MathTest.java
2 // Testing the Math class methods.
3
4 public class MathTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf("Math.abs(23.7) = %f\n", Math.abs(23.7));
9 System.out.printf("Math.abs(0.0) = %f\n", Math.abs(0.0));

10 System.out.printf("Math.abs(-23.7) = %f\n", Math.abs(-23.7));
11 System.out.printf("Math.ceil(9.2) = %f\n", Math.ceil(9.2));
12 System.out.printf("Math.ceil(-9.8) = %f\n", Math.ceil(-9.8));
13 System.out.printf("Math.cos(0.0) = %f\n", Math.cos(0.0));
14 System.out.printf("Math.exp(1.0) = %f\n", Math.exp(1.0));
15 System.out.printf("Math.exp(2.0) = %f\n", Math.exp(2.0));
16 System.out.printf("Math.floor(9.2) = %f\n", Math.floor(9.2));
17 System.out.printf("Math.floor(-9.8) = %f\n",
18 Math.floor(-9.8));
19 System.out.printf("Math.log(Math.E) = %f\n",
20 Math.log(Math.E));
21 System.out.printf("Math.log(Math.E * Math.E) = %f\n",
22 Math.log(Math.E * Math.E));
23 System.out.printf("Math.max(2.3, 12.7) = %f\n",
24 Math.max(2.3, 12.7));
25 System.out.printf("Math.max(-2.3, -12.7) = %f\n",
26 Math.max(-2.3, -12.7));
27 System.out.printf("Math.min(2.3, 12.7) = %f\n",
28 Math.min(2.3, 12.7));
29 System.out.printf("Math.min(-2.3, -12.7) = %f\n",
30 Math.min(-2.3, -12.7));
31 System.out.printf("Math.pow(2.0, 7.0) = %f\n",
32 Math.pow(2.0, 7.0));
33 System.out.printf("Math.pow(9.0, 0.5) = %f\n",
34 Math.pow(9.0, 0.5));
35 System.out.printf("Math.sin(0.0) = %f\n", Math.sin(0.0));
36 System.out.printf("Math.sqrt(900.0) = %f\n",
37 Math.sqrt(900.0));
38 System.out.printf("Math.tan(0.0) = %f\n", Math.tan(0.0));
39 } // end main
40 } // end class MathTest

Math.abs(23.7) = 23.700000
Math.abs(0.0) = 0.000000
Math.abs(-23.7) = 23.700000
Math.ceil(9.2) = 10.000000
Math.ceil(-9.8) = -9.000000
Math.cos(0.0) = 1.000000
Math.exp(1.0) = 2.718282
Math.exp(2.0) = 7.389056
Math.floor(9.2) = 9.000000
Math.floor(-9.8) = -10.000000
Math.log(Math.E) = 1.000000
Math.log(Math.E * Math.E) = 2.000000
Math.max(2.3, 12.7) = 12.700000
Math.max(-2.3, -12.7) = -2.300000
Math.min(2.3, 12.7) = 2.300000
Math.min(-2.3, -12.7) = -12.700000
Math.pow(2.0, 7.0) = 128.000000
Math.pow(9.0, 0.5) = 3.000000
Math.sin(0.0) = 0.000000
Math.sqrt(900.0) = 30.000000
Math.tan(0.0) = 0.000000

 Self-Review Exercises 4

6.4 Give the method header for each of the following methods:
a) Method hypotenuse, which takes two double-precision, floating-point arguments

side1 and side2 and returns a double-precision, floating-point result.
ANS: double hypotenuse(double side1, double side2)
b) Method smallest, which takes three integers x, y and z and returns an integer.
ANS: int smallest(int x, int y, int z)
c) Method instructions, which does not take any arguments and does not return a value.

[Note: Such methods are commonly used to display instructions to a user.]
ANS: void instructions()
d) Method intToFloat, which takes an integer argument number and returns a floating-

point result.
ANS: float intToFloat(int number)

6.5 Find the error in each of the following program segments. Explain how to correct the error.
a) void g()

{

 System.out.println("Inside method g");

 void h()

 {

 System.out.println("Inside method h");

 }

}
ANS: Error: Method h is declared within method g.

Correction: Move the declaration of h outside the declaration of g.
b) int sum(int x, int y)

{

 int result;

 result = x + y;

}
ANS: Error: The method is supposed to return an integer, but does not.

Correction: Delete the variable result, and place the statement
 return x + y;

in the method, or add the following statement at the end of the method body:
 return result;

c) void f(float a);

{

 float a;

 System.out.println(a);

}
ANS: Error: The semicolon after the right parenthesis of the parameter list is incorrect, and

the parameter a should not be redeclared in the method.
Correction: Delete the semicolon after the right parenthesis of the parameter list, and
delete the declaration float a;.

d) void product()

{

 int a = 6, b = 5, c = 4, result;

 result = a * b * c;

 System.out.printf("Result is %d\n", result);

 return result;

}

5 Chapter 6 Methods: A Deeper Look, Solutions

ANS: Error: The method returns a value when it’s not supposed to.
Correction: Change the return type from void to int.

6.6 Write a complete Java application to prompt the user for the double radius of a sphere, and
call method sphereVolume to calculate and display the volume of the sphere. Use the following state-
ment to calculate the volume:

double volume = (4.0 / 3.0) * Math.PI * Math.pow(radius, 3)

ANS: The following solution calculates the volume of a sphere, using the radius entered by
the user:

1 // Exercise 6.6: Sphere.java
2 // Calculate the volume of a sphere.
3 import java.util.Scanner;
4
5 public class Sphere
6 {
7 // obtain radius from user and display volume of sphere
8 public void determineSphereVolume()
9 {

10 Scanner input = new Scanner(System.in);
11
12 System.out.print("Enter radius of sphere: ");
13 double radius = input.nextDouble();
14
15 System.out.printf("Volume is %f\n", sphereVolume(radius));
16 } // end method determineSphereVolume
17
18 // calculate and return sphere volume
19 public double sphereVolume(double radius)
20 {
21 double volume = (4.0 / 3.0) * Math.PI * Math.pow(radius, 3);
22 return volume;
23 } // end method sphereVolume
24 } // end class Sphere

1 // Exercise 6.6: SphereTest.java
2 // Calculate the volume of a sphere.
3
4 public class SphereTest
5 {
6 // application starting point
7 public static void main(String[] args)
8 {
9 Sphere mySphere = new Sphere();

10 mySphere.determineSphereVolume();
11 } // end main
12 } // end class SphereTest

Enter radius of sphere: 4
Volume is 268.082573

 Exercises 6

Exercises
NOTE: Solutions to the programming exercises are located in the ch06solutions folder.
Each exercise has its own folder named ex06_## where ## is a two-digit number represent-
ing the exercise number. For example, exercise 6.8’s solution is located in the folder
ex06_08.

6.7 What is the value of x after each of the following statements is executed?
a) x = Math.abs(7.5);
ANS: 7.5
b) x = Math.floor(7.5);
ANS: 7.0
c) x = Math.abs(0.0);
ANS: 0.0
d) x = Math.ceil(0.0);
ANS: 0.0
e) x = Math.abs(-6.4);
ANS: 6.4
f) x = Math.ceil(-6.4);
ANS: -6.0
g) x = Math.ceil(-Math.abs(-8 + Math.floor(-5.5)));
ANS: -14.0

6.11 Answer each of the following questions:
a) What does it mean to choose numbers “at random”?
ANS: Every number has an equal chance of being chosen at any time.
b) Why is the nextInt method of class Random useful for simulating games of chance?
ANS: Because it produces a series of random numbers.
c) Why is it often necessary to scale or shift the values produced by a Random object?
ANS: To produce random numbers in a specific range.
d) Why is computerized simulation of real-world situations a useful technique?
ANS: It enables more accurate predictions of random events, such as cars arriving at toll

booths and people arriving in lines at a supermarket. The results of a simulation can
help determine how many toll booths to have open or how many cashiers to have
open at specified times.

6.12 Write statements that assign random integers to the variable n in the following ranges:
a) 1 ≤ n ≤ 2
ANS: n = 1 + randomNumbers.nextInt(2);
b) 1 ≤ n ≤ 100
ANS: n = 1 + randomNumbers.nextInt(100);
c) 0 ≤ n ≤ 9
ANS: n = randomNumbers.nextInt(10);
d) 1000 ≤ n ≤ 1112
ANS: n = 1000 + randomNumbers.nextInt(113);
e) –1 ≤ n ≤ 1
ANS: n = -1 + randomNumbers.nextInt(3);
f) –3 ≤ n ≤ 11
ANS: n = -3 + randomNumbers.nextInt(15);
ANS: [Note: See the test program in the ch06solutions\ex06_12 folder.]

6.13 For each of the following sets of integers, write a single statement that will display a number
at random from the set:

7 Chapter 6 Methods: A Deeper Look, Solutions

a) 2, 4, 6, 8, 10.
ANS: System.out.println(2 + randomNumbers.nextInt(5) * 2);
b) 3, 5, 7, 9, 11.
ANS: System.out.println(3 + randomNumbers.nextInt(5) * 2);
c) 6, 10, 14, 18, 22.
ANS: System.out.println(6 + randomNumbers.nextInt(5) * 4);
ANS: [Note: See the test program in the ch06solutions\ex06_12 folder.]

