
In this Chapter you’ll learn:

■ What exceptions are.

■ How exception and error handling works.

■ To use try, throw and catch to detect, indicate and handle exceptions, respectively.

■ To use the finally block to release resources.

■ How stack unwinding enables exceptions not caught in one scope to be caught in another.

■ How stack traces help in debugging.

■ How exceptions are arranged in an exception-class hierarchy.

■ To declare new exception classes.

■ To create chained exceptions that maintain complete stack-trace information.

It is common sense to take a method and try it. If it
fails, admit it frankly and try another. But above all,
try something.
—Franklin Delano Roosevelt

O! throw away the worser part of it,
And live the purer with the other half.
—William Shakespeare

If they’re running and they don’t look where they’re
going
I have to come out from somewhere and catch them.
—Jerome David Salinger

O infinite virtue! com’st thou smiling from the world’s
great snare uncaught?
—William Shakespeare

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

2 Chapter 11 Exception Handling: Solutions

Self-Review Exercises
11.1 List five common examples of exceptions.

ANS: Memory exhaustion, array index out of bounds, arithmetic overflow, division by ze-
ro, invalid method parameters.

11.2 Give several reasons why exception-handling techniques should not be used for conven-
tional program control.

ANS: (a) Exception handling is designed to handle infrequently occurring situations that
often result in program termination, not situations that arise all the time. (b) Flow of
control with conventional control structures is generally clearer and more efficient
than with exceptions. (c) The additional exceptions can get in the way of genuine er-
ror-type exceptions. It becomes more difficult for you to keep track of the larger
number of exception cases.

11.3 Why are exceptions particularly appropriate for dealing with errors produced by methods
of classes in the Java API?

ANS: It’s unlikely that methods of classes in the Java API could perform error processing
that would meet the unique needs of all users.

11.4 What is a “resource leak”?
ANS: A “resource leak” occurs when an executing program does not properly release a re-

source when it’s no longer needed.

11.5 If no exceptions are thrown in a try block, where does control proceed to when the try
block completes execution?

ANS: The catch blocks for that try statement are skipped, and the program resumes exe-
cution after the last catch block. If there is a finally block, it’s executed first; then
the program resumes execution after the finally block.

11.6 Give a key advantage of using catch(Exception exceptionName).
ANS: The form catch(Exception exceptionName) catches any type of exception thrown

in a try block. An advantage is that no thrown Exception can slip by without being
caught. You can then decide to handle the exception or possibly rethrow it.

11.7 Should a conventional application catch Error objects? Explain.
ANS: Errors are usually serious problems with the underlying Java system; most programs

will not want to catch Errors because they will not be able to recover from them.

11.8 What happens if no catch handler matches the type of a thrown object?
ANS: This causes the search for a match to continue in the next enclosing try statement.

If there is a finally block, it will be executed before the exception goes to the next
enclosing try statement. If there are no enclosing try statements for which there are
matching catch blocks and the exceptions are declared (or unchecked), a stack trace
is printed and the current thread terminates early. If the exceptions are checked, but
not caught or declared, compilation errors occur.

11.9 What happens if several catch blocks match the type of the thrown object?
ANS: The first matching catch block after the try block is executed.

11.10 Why would a programmer specify a superclass type as the type in a catch block?
ANS: This enables a program to catch related types of exceptions and process them in a uni-

form manner. However, it’s often useful to process the subclass types individually for
more precise exception handling.

11.11 What is the key reason for using finally blocks?
ANS: The finally block is the preferred means for releasing resources to prevent resource

leaks.

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

 Exercises 3

11.12 What happens when a catch block throws an Exception?
ANS: First, control passes to the finally block if there is one. Then the exception will be

processed by a catch block (if one exists) associated with an enclosing try block (if
one exists).

11.13 What does the statement throw exceptionReference do in a catch block?
ANS: It rethrows the exception for processing by an exception handler of an enclosing try

statement, after the finally block of the current try statement executes.

11.14 What happens to a local reference in a try block when that block throws an Exception?
ANS: The reference goes out of scope. If the referenced object becomes unreachable, the

object can be garbage collected.

Exercises
NOTE: Solutions to the programming exercises are located in the ch11solutions folder.
Each exercise has its own folder named ex11_## where ## is a two-digit number represent-
ing the exercise number. For example, exercise 11.17’s solution is located in the folder
ex11_17.

11.15 List the various exceptional conditions that have occurred in programs throughout this text
so far. List as many additional exceptional conditions as you can. For each of these, describe briefly
how a program typically would handle the exception by using the exception-handling techniques
discussed in this chapter. Typical exceptions include division by zero and array index out of bounds.

ANS: A few examples are: Division by zero—catch the exception, inform user of the at-
tempt to divide by zero. Array subscript out of bounds—catch the exception, print
an error message telling the user what index was being referenced incorrectly, and exit
the program in a controlled manner. Bad cast—catch the exception and either cast it
to the proper type if that can be determined, or print an error message indicating
what the bad cast was, and exit the program. Invalid input—catch the exception and
inform the user that the input cannot be converted to the proper type.

11.16 Until this chapter, we’ve found dealing with errors detected by constructors to be a bit awk-
ward. Explain why exception handling is an effective means for dealing with constructor failure.

ANS: A thrown exception passes to the outside world the information about the failed con-
structor and the responsibility to deal with the failure. Exceptions thrown in con-
structors cause objects built as part of the object being constructed to be marked for
eventual garbage collection.

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

