
In this Chapter you’ll learn:

■ The concept of polymorphism.

■ To use overridden methods to effect polymorphism.

■ To distinguish between abstract and concrete classes.

■ To declare abstract methods to create abstract classes.

■ How polymorphism makes systems extensible and maintainable.

■ To determine an object’s type at execution time.

■ To declare and implement interfaces.

One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind
them.
—John Ronald Reuel Tolkien

General propositions do not decide concrete cases.
—Oliver Wendell Holmes

A philosopher of imposing stature doesn’t think in a
vacuum. Even his most abstract ideas are, to some
extent, conditioned by what is or is not known in the
time when he lives.
—Alfred North Whitehead

Why art thou cast down, O my soul?
—Psalms 42:5

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

2 Chapter 10 Object-Oriented Programming: Polymorphism: Solutions

Self-Review Exercises
10.1 Fill in the blanks in each of the following statements:

a) If a class contains at least one abstract method, it’s a(n) class.
ANS: abstract.
b) Classes from which objects can be instantiated are called classes.
ANS: concrete.
c) involves using a superclass variable to invoke methods on superclass and sub-

class objects, enabling you to “program in the general.”
ANS: Polymorphism.
d) Methods that are not interface methods and that do not provide implementations must

be declared using keyword .
ANS: abstract.
e) Casting a reference stored in a superclass variable to a subclass type is called .
ANS: downcasting.

10.2 State whether each of the statements that follows is true or false. If false, explain why.
a) All methods in an abstract class must be declared as abstract methods.
ANS: False. An abstract class can include methods with implementations and abstract

methods.
b) Invoking a subclass-only method through a subclass variable is not allowed.
ANS: False. Trying to invoke a subclass-only method with a superclass variable is no al-

lowed.
c) If a superclass declares an abstract method, a subclass must implement that method.
ANS: False. Only a concrete subclass must implement the method.
d) An object of a class that implements an interface may be thought of as an object of that

interface type.
ANS: True.

Exercises
NOTE: Solutions to the programming exercises are located in the ch10solutions folder.
Each exercise has its own folder named ex10_## where ## is a two-digit number represent-
ing the exercise number. For example, exercise 10.8’s solution is located in the folder
ex10_08.

10.3 How does polymorphism enable you to program “in the general” rather than “in the spe-
cific”? Discuss the key advantages of programming “in the general.”

ANS: Polymorphism enables you to concentrate on the common operations that are ap-
plied to objects of all the classes in a hierarchy. The general processing capabilities can
be separated from any code that is specific to each class. Those general portions of the
code can accommodate new classes without modification. In some polymorphic ap-
plications, only the code that creates the objects needs to be modified to extend the
system with new classes.

10.4 What are abstract methods? Describe the circumstances in which an abstract method would
be appropriate.

ANS: An abstract method is one with keyword abstract in its declaration. Abstract meth-
ods do not provide implementations. Each concrete subclass of an abstract superclass
must provide concrete implementations of the superclass’s abstract methods. An ab-
stract method is appropriate when it does not make sense to provide an implementa-
tion for a method in a superclass (i.e., some additional subclass-specific data is
required to implement the method in a meaningful manner).

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

 Exercises 3

10.5 How does polymorphism promote extensibility?
ANS: Software that invokes polymorphic behavior is independent of the object types to

which messages are sent as long as those types are in the same inheritance hierarchy.
New object types that can respond to existing method calls can be incorporated into
a system without requiring modification of the base system, except that client code
that instantiates new objects must be modified to accommodate new types.

10.6 Discuss four ways in which you can assign superclass and subclass references to variables of
superclass and subclass types.

ANS: 1) Assigning a superclass reference to a superclass variable. 2) Assigning a subclass ref-
erence to a subclass variable. 3) Assigning a subclass object’s reference to a superclass
variable is safe, because the subclass object is an object of its superclass. However, this
reference can be used to refer only to superclass members. If this code refers to sub-
class-only members through the superclass variable, the compiler reports errors.
4) Attempting to assign a superclass object’s reference to a subclass variable is a com-
pilation error. To avoid this error, the superclass reference must be downcast to a sub-
class type explicitly. At execution time, if the object to which the reference refers is
not a subclass object, an exception will occur. The instanceof operator can be used
to ensure that such a cast is performed only if the object is a subclass object.

10.7 Compare and contrast abstract classes and interfaces. Why would you use an abstract class?
Why would you use an interface?

ANS: An abstract class describes the general notion of what it means to be an object of that
class. Abstract classes are incomplete—they normally contain data and one or more
methods that are declared abstract because the methods cannot be implemented in
a general sense. Abstract classes can contain implemented methods. Objects of an ab-
stract class cannot be instantiated. Subclasses must declare the “missing pieces”—im-
plementations of the abstract methods that are appropriate for each specific subclass.
Abstract class references can refer to objects of any of the classes below the abstract
class in an inheritance hierarchy and therefore can be used to process any such objects
polymorphically. An interface also describes abstract functionality that can be imple-
mented by objects of any number of classes. Classes that implement an interface can
be unrelated, whereas concrete subclasses of the same abstract superclass are all related
to one other by way of a shared superclass. An interface is often used when disparate
(i.e., unrelated) classes need to provide common functionality (i.e., methods) or use
common constants. An interface can also be used in place of an abstract class when
there are no default implementation details (i.e., method implementations and in-
stance variables) to inherit. When a class implements an interface, it establishes an is-
a relationship with the interface type, just as a subclass participates in an is-a relation-
ship with its superclass. Therefore, interface references can be used to evoke polymor-
phic behavior, just as an abstract superclass reference can.

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

